
Xenomai POSIX skin API

2.6.3

Generated by Doxygen 1.8.1.2

Sun Oct 13 2013 19:13:26

Contents

1 Module Index 1

1.1 Modules . 1

2 File Index 3

2.1 File List . 3

3 Module Documentation 5

3.1 Thread cancellation. 5

3.1.1 Detailed Description . 5

3.1.2 Function Documentation . 6

3.1.2.1 pthread_cancel . 6

3.1.2.2 pthread_cleanup_pop . 6

3.1.2.3 pthread_cleanup_push . 7

3.1.2.4 pthread_setcancelstate . 7

3.1.2.5 pthread_setcanceltype . 8

3.1.2.6 pthread_testcancel . 8

3.2 Clocks and timers services. 10

3.2.1 Detailed Description . 10

3.2.2 Function Documentation . 11

3.2.2.1 clock_getres . 11

3.2.2.2 clock_gettime . 11

3.2.2.3 clock_nanosleep . 12

3.2.2.4 clock_settime . 13

3.2.2.5 do_clock_host_realtime . 13

3.2.2.6 nanosleep . 13

3.2.2.7 timer_create . 14

3.2.2.8 timer_delete . 15

3.2.2.9 timer_getoverrun . 15

3.2.2.10 timer_gettime . 16

3.2.2.11 timer_settime . 16

3.3 Condition variables services. 18

3.3.1 Detailed Description . 18

ii CONTENTS

3.3.2 Function Documentation . 19

3.3.2.1 pthread_cond_broadcast . 19

3.3.2.2 pthread_cond_destroy . 19

3.3.2.3 pthread_cond_init . 20

3.3.2.4 pthread_cond_signal . 20

3.3.2.5 pthread_cond_timedwait . 20

3.3.2.6 pthread_cond_wait . 21

3.3.2.7 pthread_condattr_destroy . 22

3.3.2.8 pthread_condattr_getclock . 22

3.3.2.9 pthread_condattr_getpshared . 23

3.3.2.10 pthread_condattr_init . 23

3.3.2.11 pthread_condattr_setclock . 24

3.3.2.12 pthread_condattr_setpshared . 24

3.4 Interruptions management services. 26

3.4.1 Detailed Description . 26

3.4.2 Function Documentation . 26

3.4.2.1 pthread_intr_attach_np . 26

3.4.2.2 pthread_intr_control_np . 27

3.4.2.3 pthread_intr_detach_np . 28

3.4.2.4 pthread_intr_wait_np . 28

3.5 POSIX skin. 30

3.5.1 Detailed Description . 31

3.6 Message queues services. 32

3.6.1 Detailed Description . 32

3.6.2 Function Documentation . 32

3.6.2.1 mq_close . 32

3.6.2.2 mq_getattr . 33

3.6.2.3 mq_notify . 33

3.6.2.4 mq_open . 34

3.6.2.5 mq_receive . 35

3.6.2.6 mq_send . 36

3.6.2.7 mq_setattr . 37

3.6.2.8 mq_timedreceive . 37

3.6.2.9 mq_timedsend . 38

3.6.2.10 mq_unlink . 39

3.7 Mutex services. 40

3.7.1 Detailed Description . 40

3.7.2 Function Documentation . 41

3.7.2.1 pthread_mutex_destroy . 41

3.7.2.2 pthread_mutex_init . 41

Generated on Sun Oct 13 2013 19:13:26 for Xenomai POSIX skin API by Doxygen

CONTENTS iii

3.7.2.3 pthread_mutex_lock . 42

3.7.2.4 pthread_mutex_timedlock . 42

3.7.2.5 pthread_mutex_trylock . 43

3.7.2.6 pthread_mutex_unlock . 44

3.7.2.7 pthread_mutexattr_destroy . 44

3.7.2.8 pthread_mutexattr_getprotocol . 45

3.7.2.9 pthread_mutexattr_getpshared . 45

3.7.2.10 pthread_mutexattr_gettype . 46

3.7.2.11 pthread_mutexattr_init . 46

3.7.2.12 pthread_mutexattr_setprotocol . 47

3.7.2.13 pthread_mutexattr_setpshared . 47

3.7.2.14 pthread_mutexattr_settype . 48

3.8 Threads scheduling services. 49

3.8.1 Detailed Description . 49

3.8.2 Function Documentation . 50

3.8.2.1 pthread_getschedparam . 50

3.8.2.2 pthread_getschedparam_ex . 50

3.8.2.3 pthread_setschedparam . 51

3.8.2.4 pthread_setschedparam_ex . 52

3.8.2.5 sched_get_priority_max . 52

3.8.2.6 sched_get_priority_min . 52

3.8.2.7 sched_rr_get_interval . 53

3.8.2.8 sched_setconfig_np . 53

3.8.2.9 sched_yield . 54

3.9 Semaphores services. 55

3.9.1 Detailed Description . 55

3.9.2 Function Documentation . 55

3.9.2.1 sem_close . 55

3.9.2.2 sem_destroy . 56

3.9.2.3 sem_getvalue . 56

3.9.2.4 sem_init . 57

3.9.2.5 sem_open . 57

3.9.2.6 sem_post . 58

3.9.2.7 sem_timedwait . 59

3.9.2.8 sem_trywait . 59

3.9.2.9 sem_unlink . 60

3.9.2.10 sem_wait . 60

3.10 Shared memory services. 62

3.10.1 Detailed Description . 62

3.10.2 Function Documentation . 62

Generated on Sun Oct 13 2013 19:13:26 for Xenomai POSIX skin API by Doxygen

iv CONTENTS

3.10.2.1 close . 62

3.10.2.2 ftruncate . 63

3.10.2.3 mmap . 64

3.10.2.4 munmap . 65

3.10.2.5 shm_open . 65

3.10.2.6 shm_unlink . 66

3.11 Signals services. 68

3.11.1 Detailed Description . 68

3.11.2 Function Documentation . 69

3.11.2.1 pthread_kill . 69

3.11.2.2 pthread_sigmask . 69

3.11.2.3 pthread_sigqueue_np . 70

3.11.2.4 sigaction . 70

3.11.2.5 sigaddset . 72

3.11.2.6 sigdelset . 72

3.11.2.7 sigemptyset . 72

3.11.2.8 sigfillset . 73

3.11.2.9 sigismember . 73

3.11.2.10sigpending . 73

3.11.2.11sigtimedwait . 74

3.11.2.12sigwait . 75

3.11.2.13sigwaitinfo . 75

3.12 Threads management services. 77

3.12.1 Detailed Description . 78

3.12.2 Function Documentation . 78

3.12.2.1 pthread_create . 78

3.12.2.2 pthread_detach . 79

3.12.2.3 pthread_equal . 79

3.12.2.4 pthread_exit . 80

3.12.2.5 pthread_join . 80

3.12.2.6 pthread_make_periodic_np . 81

3.12.2.7 pthread_once . 81

3.12.2.8 pthread_self . 81

3.12.2.9 pthread_set_mode_np . 82

3.12.2.10pthread_set_name_np . 82

3.12.2.11pthread_wait_np . 83

3.13 Thread creation attributes. 84

3.13.1 Detailed Description . 85

3.13.2 Function Documentation . 85

3.13.2.1 pthread_attr_destroy . 85

Generated on Sun Oct 13 2013 19:13:26 for Xenomai POSIX skin API by Doxygen

CONTENTS v

3.13.2.2 pthread_attr_getaffinity_np . 85

3.13.2.3 pthread_attr_getdetachstate . 86

3.13.2.4 pthread_attr_getfp_np . 86

3.13.2.5 pthread_attr_getinheritsched . 87

3.13.2.6 pthread_attr_getname_np . 87

3.13.2.7 pthread_attr_getschedparam . 88

3.13.2.8 pthread_attr_getschedparam_ex . 88

3.13.2.9 pthread_attr_getschedpolicy . 89

3.13.2.10pthread_attr_getscope . 89

3.13.2.11pthread_attr_getstacksize . 90

3.13.2.12pthread_attr_init . 90

3.13.2.13pthread_attr_setaffinity_np . 90

3.13.2.14pthread_attr_setdetachstate . 91

3.13.2.15pthread_attr_setfp_np . 91

3.13.2.16pthread_attr_setinheritsched . 92

3.13.2.17pthread_attr_setname_np . 92

3.13.2.18pthread_attr_setschedparam . 93

3.13.2.19pthread_attr_setschedparam_ex . 93

3.13.2.20pthread_attr_setschedpolicy . 94

3.13.2.21pthread_attr_setscope . 94

3.13.2.22pthread_attr_setstacksize . 95

3.14 Thread-specific data. 96

3.14.1 Detailed Description . 96

3.14.2 Function Documentation . 96

3.14.2.1 pthread_getspecific . 96

3.14.2.2 pthread_key_create . 97

3.14.2.3 pthread_key_delete . 97

3.14.2.4 pthread_setspecific . 98

4 File Documentation 99

4.1 ksrc/skins/posix/syscall.c File Reference . 99

4.1.1 Detailed Description . 99

Generated on Sun Oct 13 2013 19:13:26 for Xenomai POSIX skin API by Doxygen

Chapter 1

Module Index

1.1 Modules

Here is a list of all modules:

POSIX skin. 30

Clocks and timers services. 10

Condition variables services. 18

Interruptions management services. 26
Message queues services. 32

Mutex services. 40

Semaphores services. 55
Shared memory services. 62

Signals services. 68
Threads management services. 77

Thread cancellation. 5

Threads scheduling services. 49

Thread creation attributes. 84

Thread-specific data. 96

2 Module Index

Generated on Sun Oct 13 2013 19:13:26 for Xenomai POSIX skin API by Doxygen

Chapter 2

File Index

2.1 File List

Here is a list of all documented files with brief descriptions:

ksrc/skins/posix/apc.h . ??

ksrc/skins/posix/cancel.h . ??
ksrc/skins/posix/cb_lock.h . ??

ksrc/skins/posix/cond.h . ??

ksrc/skins/posix/internal.h . ??
ksrc/skins/posix/intr.h . ??

ksrc/skins/posix/mq.h . ??

ksrc/skins/posix/mutex.h . ??
ksrc/skins/posix/registry.h . ??

ksrc/skins/posix/sem.h . ??
ksrc/skins/posix/shm.h . ??

ksrc/skins/posix/sig.h . ??

ksrc/skins/posix/syscall.c
This file is part of the Xenomai project . 99

ksrc/skins/posix/thread.h . ??

ksrc/skins/posix/timer.h . ??
ksrc/skins/posix/tsd.h . ??

4 File Index

Generated on Sun Oct 13 2013 19:13:26 for Xenomai POSIX skin API by Doxygen

Chapter 3

Module Documentation

3.1 Thread cancellation.

Thread cancellation.

Collaboration diagram for Thread cancellation.:

Threads management
 services.

Thread cancellation.

Functions

• int pthread_cancel (pthread_t thread)

Cancel a thread.

• void pthread_cleanup_push (cleanup_routine_t ∗routine, void ∗arg)

Register a cleanup handler to be executed at the time of cancellation.

• void pthread_cleanup_pop (int execute)

Unregister the last registered cleanup handler.

• int pthread_setcanceltype (int type, int ∗oldtype_ptr)

Set cancelability type of the current thread.

• int pthread_setcancelstate (int state, int ∗oldstate_ptr)

Set cancelability state of the current thread.

• void pthread_testcancel (void)

Test if a cancellation request is pending.

3.1.1 Detailed Description

Thread cancellation. Cancellation is the mechanism by which a thread can terminate the execution

of a Xenomai POSIX skin thread (created with pthread_create()). More precisely, a thread can send
a cancellation request to a Xenomai POSIX skin thread and depending on its cancelability type (see

pthread_setcanceltype()) and state (see pthread_setcancelstate()), the target thread can then either
ignore the request, honor it immediately, or defer it till it reaches a cancellation point. When threads are

first created by pthread_create(), they always defer cancellation requests.

When a thread eventually honors a cancellation request, it behaves as if pthread_exit(PTHREAD_CAN-
CELED) was called. All cleanup handlers are executed in reverse order, finalization functions for thread-
specific data are called, and finally the thread stops executing. If the canceled thread was joinable,

$group__posix__thread.html

6 Module Documentation

the return value PTHREAD_CANCELED is provided to whichever thread calls pthread_join() on it. See
pthread_exit() for more information.

Cancellation points are the points where the thread checks for pending cancellation requests and per-

forms them. The POSIX threads functions pthread_join(), pthread_cond_wait(), pthread_cond_timedwait(),
pthread_testcancel(), sem_wait(), sem_timedwait(), sigwait(), sigwaitinfo() and sigtimedwait() are can-

cellation points.

See Also

Specification.

3.1.2 Function Documentation

3.1.2.1 int pthread cancel (pthread t thread)

Cancel a thread.

This service sends a cancellation request to the thread thread and returns immediately. De-

pending on the target thread cancelability state (see pthread_setcancelstate()) and type (see

pthread_setcanceltype()), its termination is either immediate, deferred or ignored.

When the cancellation request is handled and before the thread is terminated, the cancellation cleanup
handlers (registered with the pthread_cleanup_push() service) are called, then the thread-specific data

destructor functions (registered with pthread_key_create()).

Returns

0 on success;

an error number if:

• ESRCH, the thread thread was not found.

See Also

Specification.

3.1.2.2 void pthread cleanup pop (int execute)

Unregister the last registered cleanup handler.

If the calling thread is a Xenomai POSIX skin thread (i.e. created with pthread_create()), this service

unregisters the last routine which was registered with pthread_cleanup_push() and call it if execute is
not null.

If the caller context is invalid (not a Xenomai POSIX skin thread), this service has no effect.

This service may be called at any place, but for maximal portability, should only called in the same lexical
scope as the matching call to pthread_cleanup_push().

Parameters

execute if non zero, the last registered cleanup handler should be executed before it is unreg-

istered.

Valid contexts:

• Xenomai POSIX skin kernel-space thread,

• Xenomai POSIX skin user-space thread (switches to primary mode).

Generated on Sun Oct 13 2013 19:13:26 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/xsh_chap02_09.html#tag_02_09_05
http://www.opengroup.org/onlinepubs/000095399/functions/pthread_cancel.html

3.1 Thread cancellation. 7

See Also

Specification.

3.1.2.3 void pthread cleanup push (cleanup routine t ∗ routine, void ∗ arg)

Register a cleanup handler to be executed at the time of cancellation.

This service registers the given routine to be executed a the time of cancellation of the calling thread, if
this thread is a Xenomai POSIX skin thread (i.e. created with the pthread_create() service). If the caller

context is invalid (not a Xenomai POSIX skin thread), this service has no effect.

If allocation from the system heap fails (because the system heap size is to small), this service fails
silently.

The routines registered with this service get called in LIFO order when the calling thread calls

pthread_exit() or is canceled, or when it calls the pthread_cleanup_pop() service with a non null ar-
gument.

Parameters

routine the cleanup routine to be registered;

arg the argument associated with this routine.

Valid contexts:

• Xenomai POSIX skin kernel-space thread,

• Xenomai POSIX skin user-space thread (switches to primary mode).

See Also

Specification.

3.1.2.4 int pthread setcancelstate (int state, int ∗ oldstate ptr)

Set cancelability state of the current thread.

This service atomically set the cancelability state of the calling thread and returns its previous value at

the address oldstate_ptr, if the calling thread is a Xenomai POSIX skin thread (i.e. created with the
pthread_create service).

The cancelability state of a POSIX thread may be:

• PTHREAD_CANCEL_ENABLE, meaning that cancellation requests will be handled if received;

• PTHREAD_CANCEL_DISABLE, meaning that cancellation requests will not be handled if re-
ceived.

Parameters

state new cancelability state of the calling thread;

oldstate_ptr address where the old cancelability state will be stored on success.

Returns

0 on success;
an error number if:

• EINVAL, state is not a valid cancelability state;

Generated on Sun Oct 13 2013 19:13:26 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/pthread_cleanup_pop.html
http://www.opengroup.org/onlinepubs/000095399/functions/pthread_cleanup_push.html

8 Module Documentation

• EPERM, the caller context is invalid.

Valid contexts:

• Xenomai POSIX skin kernel-space thread,

• Xenomai POSIX skin user-space thread (switches to primary mode).

See Also

Specification.

3.1.2.5 int pthread setcanceltype (int type, int ∗ oldtype ptr)

Set cancelability type of the current thread.

This service atomically sets the cancelability type of the calling thread, and return its previous value
at the address oldtype_ptr, if this thread is a Xenomai POSIX skin thread (i.e. was created with the

pthread_create() service).

The cancelability type of a POSIX thread may be:

• PTHREAD_CANCEL_DEFERRED, meaning that cancellation requests are only handled in ser-

vices which are cancellation points;

• PTHREAD_CANCEL_ASYNCHRONOUS, meaning that cancellation requests are handled as
soon as they are sent.

Parameters

type new cancelability type of the calling thread;

oldtype_ptr address where the old cancelability type will be stored on success.

Returns

0 on success;

an error number if:

• EINVAL, type is not a valid cancelability type;

• EPERM, the caller context is invalid.

Valid contexts:

• Xenomai POSIX skin kernel-space thread,

• Xenomai POSIX skin user-space thread (switches to primary mode).

See Also

Specification.

3.1.2.6 void pthread testcancel (void)

Test if a cancellation request is pending.

This function creates a cancellation point if the calling thread is a Xenomai POSIX skin thread (i.e.
created with the pthread_create() service).

This function is a cancellation point. It has no effect if cancellation is disabled.

Generated on Sun Oct 13 2013 19:13:26 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/pthread_setcancelstate.html
http://www.opengroup.org/onlinepubs/000095399/functions/pthread_setcanceltype.html

3.1 Thread cancellation. 9

Valid contexts:

• Xenomai POSIX skin kernel-space thread,

• Xenomai POSIX skin user-space thread (switches to primary mode).

See Also

Specification.

Generated on Sun Oct 13 2013 19:13:26 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/pthread_testcancel.html

10 Module Documentation

3.2 Clocks and timers services.

Clocks and timers services.

Collaboration diagram for Clocks and timers services.:

POSIX skin. Clocks and timers services.

Functions

• int clock_getres (clockid_t clock_id, struct timespec ∗res)

Get the resolution of the specified clock.

• static int do_clock_host_realtime (struct timespec ∗tp)

Read the host-synchronised realtime clock.

• int clock_gettime (clockid_t clock_id, struct timespec ∗tp)

Read the specified clock.

• int clock_settime (clockid_t clock_id, const struct timespec ∗tp)

Set the specified clock.

• int clock_nanosleep (clockid_t clock_id, int flags, const struct timespec ∗rqtp, struct timespec

∗rmtp)

Sleep some amount of time.

• int nanosleep (const struct timespec ∗rqtp, struct timespec ∗rmtp)

Sleep some amount of time.

• int timer_create (clockid_t clockid, const struct sigevent ∗__restrict__ evp, timer_t ∗__restrict__

timerid)

Create a timer object.

• int timer_delete (timer_t timerid)

Delete a timer object.

• int timer_settime (timer_t timerid, int flags, const struct itimerspec ∗__restrict__ value, struct itimer-

spec ∗__restrict__ ovalue)

Start or stop a timer.

• int timer_gettime (timer_t timerid, struct itimerspec ∗value)

Get timer next expiration date and reload value.

• int timer_getoverrun (timer_t timerid)

Get expiration overruns count since the most recent timer expiration signal delivery.

3.2.1 Detailed Description

Clocks and timers services. Xenomai POSIX skin supports two clocks:

CLOCK_REALTIME maps to the nucleus system clock, keeping time as the amount of time since the
Epoch, with a resolution of one system clock tick.

CLOCK_MONOTONIC maps to an architecture-dependent high resolution counter, so is suitable for

measuring short time intervals. However, when used for sleeping (with clock_nanosleep()), the CLOC-

K_MONOTONIC clock has a resolution of one system clock tick, like the CLOCK_REALTIME clock.

Timer objects may be created with the timer_create() service using either of the two clocks, but the

resolution of these timers is one system clock tick, as is the case for clock_nanosleep().

Generated on Sun Oct 13 2013 19:13:26 for Xenomai POSIX skin API by Doxygen

$group__posix.html

3.2 Clocks and timers services. 11

Note

The duration of the POSIX clock tick depends on the active time base (configurable at compile-

time with the constant CONFIG_XENO_OPT_POSIX_PERIOD, and at run-time with the xeno_posix
module parameter tick_arg). When the time base is aperiodic (which is the default) the system clock

tick is one nanosecond.

See Also

Specification.

3.2.2 Function Documentation

3.2.2.1 int clock getres (clockid t clock id, struct timespec ∗ res)

Get the resolution of the specified clock.

This service returns, at the address res, if it is not NULL, the resolution of the clock clock_id.

For both CLOCK_REALTIME and CLOCK_MONOTONIC, this resolution is the duration of one system

clock tick. No other clock is supported.

Parameters

clock_id clock identifier, either CLOCK_REALTIME or CLOCK_MONOTONIC;

res the address where the resolution of the specified clock will be stored on success.

Return values

0 on success;

-1 with errno set if:

• EINVAL, clock_id is invalid;

See Also

Specification.

3.2.2.2 int clock gettime (clockid t clock id, struct timespec ∗ tp)

Read the specified clock.

This service returns, at the address tp the current value of the clock clock_id. If clock_id is:

• CLOCK_REALTIME, the clock value represents the amount of time since the Epoch, with a preci-

sion of one system clock tick;

• CLOCK_MONOTONIC, the clock value is given by an architecture-dependent high resolution

counter, with a precision independent from the system clock tick duration.

• CLOCK_HOST_REALTIME, the clock value as seen by the host, typically Linux. Resolution and
precision depend on the host, but it is guaranteed that both, host and Xenomai, see the same

information.

Parameters

clock_id clock identifier, either CLOCK_REALTIME, CLOCK_MONOTONIC, or CLOCK_HO-

ST_REALTIME;

tp the address where the value of the specified clock will be stored.

Generated on Sun Oct 13 2013 19:13:26 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/xsh_chap02_08.html#tag_02_08_05
http://www.opengroup.org/onlinepubs/000095399/functions/clock_getres.html

12 Module Documentation

Return values

0 on success;

-1 with errno set if:

• EINVAL, clock_id is invalid.

See Also

Specification.

References do_clock_host_realtime().

3.2.2.3 int clock nanosleep (clockid t clock id, int flags, const struct timespec ∗ rqtp, struct timespec ∗ rmtp)

Sleep some amount of time.

This service suspends the calling thread until the wakeup time specified by rqtp, or a signal is delivered

to the caller. If the flag TIMER_ABSTIME is set in the flags argument, the wakeup time is specified as an
absolute value of the clock clock_id. If the flag TIMER_ABSTIME is not set, the wakeup time is specified

as a time interval.

If this service is interrupted by a signal, the flag TIMER_ABSTIME is not set, and rmtp is not NULL, the
time remaining until the specified wakeup time is returned at the address rmtp.

The resolution of this service is one system clock tick.

Parameters

clock_id clock identifier, either CLOCK_REALTIME or CLOCK_MONOTONIC.

flags one of:

• 0 meaning that the wakeup time rqtp is a time interval;

• TIMER_ABSTIME, meaning that the wakeup time is an absolute value of the

clock clock_id.

rqtp address of the wakeup time.

rmtp address where the remaining time before wakeup will be stored if the service is inter-

rupted by a signal.

Returns

0 on success;

an error number if:

• EPERM, the caller context is invalid;

• ENOTSUP, the specified clock is unsupported;

• EINVAL, the specified wakeup time is invalid;

• EINTR, this service was interrupted by a signal.

Valid contexts:

• Xenomai kernel-space thread,

• Xenomai user-space thread (switches to primary mode).

See Also

Specification.

Referenced by nanosleep().

Generated on Sun Oct 13 2013 19:13:26 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/clock_gettime.html
http://www.opengroup.org/onlinepubs/000095399/functions/clock_nanosleep.html

3.2 Clocks and timers services. 13

3.2.2.4 int clock settime (clockid t clock id, const struct timespec ∗ tp)

Set the specified clock.

This allow setting the CLOCK_REALTIME clock.

Parameters

clock_id the id of the clock to be set, only CLOCK_REALTIME is supported.

tp the address of a struct timespec specifying the new date.

Return values

0 on success;

-1 with errno set if:

• EINVAL, clock_id is not CLOCK_REALTIME;

• EINVAL, the date specified by tp is invalid.

See Also

Specification.

3.2.2.5 static int do clock host realtime (struct timespec ∗ tp) [static]

Read the host-synchronised realtime clock.

Obtain the current time with NTP corrections from the Linux domain

Parameters

tp pointer to a struct timespec

Return values

0 on success;

-1 if no suitable NTP-corrected clocksource is availabel

See Also

Specification.

Referenced by clock_gettime().

3.2.2.6 int nanosleep (const struct timespec ∗ rqtp, struct timespec ∗ rmtp)

Sleep some amount of time.

This service suspends the calling thread until the wakeup time specified by rqtp, or a signal is delivered.
The wakeup time is specified as a time interval.

If this service is interrupted by a signal and rmtp is not NULL, the time remaining until the specified

wakeup time is returned at the address rmtp.

The resolution of this service is one system clock tick.

Generated on Sun Oct 13 2013 19:13:26 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/clock_settime.html
http://www.opengroup.org/onlinepubs/000095399/functions/gettimeofday.html

14 Module Documentation

Parameters

rqtp address of the wakeup time.

rmtp address where the remaining time before wakeup will be stored if the service is inter-

rupted by a signal.

Return values

0 on success;

-1 with errno set if:

• EPERM, the caller context is invalid;

• EINVAL, the specified wakeup time is invalid;

• EINTR, this service was interrupted by a signal.

Valid contexts:

• Xenomai kernel-space thread,

• Xenomai user-space thread (switches to primary mode).

See Also

Specification.

References clock_nanosleep().

3.2.2.7 int timer create (clockid t clockid, const struct sigevent ∗ restrict evp, timer t ∗ restrict timerid)

Create a timer object.

This service creates a time object using the clock clockid.

If evp is not NULL, it describes the notification mechanism used on timer expiration. Only notification via

signal delivery is supported (member sigev_notify of evp set to SIGEV_SIGNAL). The signal will be sent

to the thread starting the timer with the timer_settime() service. If evp is NULL, the SIGALRM signal will
be used.

Note that signals sent to user-space threads will cause them to switch to secondary mode.

If this service succeeds, an identifier for the created timer is returned at the address timerid. The timer

is unarmed until started with the timer_settime() service.

Parameters

clockid clock used as a timing base;

evp description of the asynchronous notification to occur when the timer expires;

timerid address where the identifier of the created timer will be stored on success.

Generated on Sun Oct 13 2013 19:13:26 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/nanosleep.html

3.2 Clocks and timers services. 15

Return values

0 on success;

-1 with errno set if:

• EINVAL, the clock clockid is invalid;

• EINVAL, the member sigev_notify of the sigevent structure at the address
evp is not SIGEV_SIGNAL;

• EINVAL, the member sigev_signo of the sigevent structure is an invalid
signal number;

• EAGAIN, the maximum number of timers was exceeded, recompile with a

larger value.

See Also

Specification.

3.2.2.8 int timer delete (timer t timerid)

Delete a timer object.

This service deletes the timer timerid.

Parameters

timerid identifier of the timer to be removed;

Return values

0 on success;

-1 with errno set if:

• EINVAL, timerid is invalid;

• EPERM, the timer timerid does not belong to the current process.

See Also

Specification.

3.2.2.9 int timer getoverrun (timer t timerid)

Get expiration overruns count since the most recent timer expiration signal delivery.

This service returns timerid expiration overruns count since the most recent timer expiration signal de-
livery. If this count is more than DELAYTIMER_MAX expirations, DELAYTIMER_MAX is returned.

Parameters

timerid Timer identifier.

Returns

the overruns count on success;

-1 with errno set if:

• EINVAL, timerid is invalid;

Generated on Sun Oct 13 2013 19:13:26 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/timer_create.html
http://www.opengroup.org/onlinepubs/000095399/functions/timer_delete.html

16 Module Documentation

• EPERM, the timer timerid does not belong to the current process.

See Also

Specification.

3.2.2.10 int timer gettime (timer t timerid, struct itimerspec ∗ value)

Get timer next expiration date and reload value.

This service stores, at the address value, the expiration date (member it_value) and reload value (mem-
ber it_interval) of the timer timerid. The values are returned as time intervals, and as multiples of the

system clock tick duration (see note in section Clocks and timers services for details on the duration of
the system clock tick). If the timer was not started, the returned members it_value and it_interval of

value are zero.

Parameters

timerid timer identifier;

value address where the timer expiration date and reload value are stored on success.

Return values

0 on success;

-1 with errno set if:

• EINVAL, timerid is invalid;

• EPERM, the timer timerid does not belong to the current process.

See Also

Specification.

3.2.2.11 int timer settime (timer t timerid, int flags, const struct itimerspec ∗ restrict value, struct itimerspec ∗ restrict

ovalue)

Start or stop a timer.

This service sets a timer expiration date and reload value of the timer timerid. If ovalue is not NULL, the
current expiration date and reload value are stored at the address ovalue as with timer_gettime().

If the member it_value of the itimerspec structure at value is zero, the timer is stopped, otherwise the

timer is started. If the member it_interval is not zero, the timer is periodic. The current thread must be

a POSIX skin thread (created with pthread_create()) and will be notified via signal of timer expirations.
Note that these notifications will cause user-space threads to switch to secondary mode.

When starting the timer, if flags is TIMER_ABSTIME, the expiration value is interpreted as an absolute

date of the clock passed to the timer_create() service. Otherwise, the expiration value is interpreted as
a time interval.

Expiration date and reload value are rounded to an integer count of system clock ticks (see note in

section Clocks and timers services for details on the duration of the system tick).

Parameters

timerid identifier of the timer to be started or stopped;

flags one of 0 or TIMER_ABSTIME;

Generated on Sun Oct 13 2013 19:13:26 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/timer_getoverrun.html
http://www.opengroup.org/onlinepubs/000095399/functions/timer_gettime.html

3.2 Clocks and timers services. 17

value address where the specified timer expiration date and reload value are read;

ovalue address where the specified timer previous expiration date and reload value are

stored if not NULL.

Return values

0 on success;

-1 with errno set if:

• EPERM, the caller context is invalid;

• EINVAL, the specified timer identifier, expiration date or reload value is in-

valid;

• EPERM, the timer timerid does not belong to the current process.

Valid contexts:

• Xenomai kernel-space POSIX skin thread,

• kernel-space thread cancellation cleanup routine,

• Xenomai POSIX skin user-space thread (switches to primary mode),

• user-space thread cancellation cleanup routine.

See Also

Specification.

Generated on Sun Oct 13 2013 19:13:26 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/timer_settime.html

18 Module Documentation

3.3 Condition variables services.

Condition variables services.

Collaboration diagram for Condition variables services.:

POSIX skin.
Condition variables

 services.

Functions

• int pthread_cond_init (pthread_cond_t ∗cnd, const pthread_condattr_t ∗attr)

Initialize a condition variable.

• int pthread_cond_destroy (pthread_cond_t ∗cnd)

Destroy a condition variable.

• int pthread_cond_wait (pthread_cond_t ∗cnd, pthread_mutex_t ∗mx)

Wait on a condition variable.

• int pthread_cond_timedwait (pthread_cond_t ∗cnd, pthread_mutex_t ∗mx, const struct timespec
∗abstime)

Wait a bounded time on a condition variable.

• int pthread_cond_signal (pthread_cond_t ∗cnd)

Signal a condition variable.

• int pthread_cond_broadcast (pthread_cond_t ∗cnd)

Broadcast a condition variable.

• int pthread_condattr_init (pthread_condattr_t ∗attr)

Initialize a condition variable attributes object.

• int pthread_condattr_destroy (pthread_condattr_t ∗attr)

Destroy a condition variable attributes object.

• int pthread_condattr_getclock (const pthread_condattr_t ∗attr, clockid_t ∗clk_id)

Get the clock selection attribute from a condition variable attributes object.

• int pthread_condattr_setclock (pthread_condattr_t ∗attr, clockid_t clk_id)

Set the clock selection attribute of a condition variable attributes object.

• int pthread_condattr_getpshared (const pthread_condattr_t ∗attr, int ∗pshared)

Get the process-shared attribute from a condition variable attributes object.

• int pthread_condattr_setpshared (pthread_condattr_t ∗attr, int pshared)

Set the process-shared attribute of a condition variable attributes object.

3.3.1 Detailed Description

Condition variables services. A condition variable is a synchronization object that allows threads to
suspend execution until some predicate on shared data is satisfied. The basic operations on conditions

are: signal the condition (when the predicate becomes true), and wait for the condition, suspending the

thread execution until another thread signals the condition.

A condition variable must always be associated with a mutex, to avoid the race condition where a thread

prepares to wait on a condition variable and another thread signals the condition just before the first

thread actually waits on it.

Before it can be used, a condition variable has to be initialized with pthread_cond_init(). An attribute
object, which reference may be passed to this service, allows to select the features of the created

Generated on Sun Oct 13 2013 19:13:26 for Xenomai POSIX skin API by Doxygen

$group__posix.html

3.3 Condition variables services. 19

condition variable, namely the clock used by the pthread_cond_timedwait() service (CLOCK_REALTIM-
E is used by default), and whether it may be shared between several processes (it may not be shared

by default, see pthread_condattr_setpshared()).

Note that only pthread_cond_init() may be used to initialize a condition variable, using the static initializer
PTHREAD_COND_INITIALIZER is not supported.

3.3.2 Function Documentation

3.3.2.1 int pthread cond broadcast (pthread cond t ∗ cnd)

Broadcast a condition variable.

This service unblocks all threads blocked on the condition variable cnd.

Parameters

cnd the condition variable to be signalled.

Returns

0 on succes,

an error number if:

• EINVAL, the condition variable is invalid;

• EPERM, the condition variable is not process-shared and does not belong to the current pro-

cess.

See Also

Specification.

3.3.2.2 int pthread cond destroy (pthread cond t ∗ cnd)

Destroy a condition variable.

This service destroys the condition variable cnd, if no thread is currently blocked on it. The condition
variable becomes invalid for all condition variable services (they all return the EINVAL error) except

pthread_cond_init().

Parameters

cnd the condition variable to be destroyed.

Returns

0 on succes,

an error number if:

• EINVAL, the condition variable cnd is invalid;

• EPERM, the condition variable is not process-shared and does not belong to the current pro-

cess;

• EBUSY, some thread is currently using the condition variable.

See Also

Specification.

Generated on Sun Oct 13 2013 19:13:26 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/pthread_cond_broadcast.html
http://www.opengroup.org/onlinepubs/000095399/functions/pthread_cond_destroy.html

20 Module Documentation

3.3.2.3 int pthread cond init (pthread cond t ∗ cnd, const pthread condattr t ∗ attr)

Initialize a condition variable.

This service initializes the condition variable cnd, using the condition variable attributes object

attr. If attr is NULL or this service is called from user-space, default attributes are used (see

pthread_condattr_init()).

Parameters

cnd the condition variable to be initialized;

attr the condition variable attributes object.

Returns

0 on succes,
an error number if:

• EINVAL, the condition variable attributes object attr is invalid or uninitialized;

• EBUSY, the condition variable cnd was already initialized;

• ENOMEM, insufficient memory exists in the system heap to initialize the condition variable,

increase CONFIG_XENO_OPT_SYS_HEAPSZ.

See Also

Specification.

3.3.2.4 int pthread cond signal (pthread cond t ∗ cnd)

Signal a condition variable.

This service unblocks one thread blocked on the condition variable cnd.

If more than one thread is blocked on the specified condition variable, the highest priority thread is

unblocked.

Parameters

cnd the condition variable to be signalled.

Returns

0 on succes,

an error number if:

• EINVAL, the condition variable is invalid;

• EPERM, the condition variable is not process-shared and does not belong to the current pro-
cess.

See Also

Specification.

3.3.2.5 int pthread cond timedwait (pthread cond t ∗ cnd, pthread mutex t ∗ mx, const struct timespec ∗ abstime)

Wait a bounded time on a condition variable.

Generated on Sun Oct 13 2013 19:13:26 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/pthread_cond_init.html
http://www.opengroup.org/onlinepubs/000095399/functions/pthread_cond_signal.html.

3.3 Condition variables services. 21

This service is equivalent to pthread_cond_wait(), except that the calling thread remains blocked on the
condition variable cnd only until the timeout specified by abstime expires.

The timeout abstime is expressed as an absolute value of the clock attribute passed to

pthread_cond_init(). By default, CLOCK_REALTIME is used.

Parameters

cnd the condition variable to wait for;

mx the mutex associated with cnd;

abstime the timeout, expressed as an absolute value of the clock attribute passed to

pthread_cond_init().

Returns

0 on success,

an error number if:

• EPERM, the caller context is invalid;

• EPERM, the specified condition variable is not process-shared and does not belong to the
current process;

• EINVAL, the specified condition variable, mutex or timeout is invalid;

• EINVAL, another thread is currently blocked on cnd using another mutex than mx;

• EPERM, the specified mutex is not owned by the caller;

• ETIMEDOUT, the specified timeout expired.

Valid contexts:

• Xenomai kernel-space thread;

• Xenomai user-space thread (switches to primary mode).

See Also

Specification.

3.3.2.6 int pthread cond wait (pthread cond t ∗ cnd, pthread mutex t ∗ mx)

Wait on a condition variable.

This service atomically unlocks the mutex mx, and block the calling thread until the condition variable cnd
is signalled using pthread_cond_signal() or pthread_cond_broadcast(). When the condition is signaled,

this service re-acquire the mutex before returning.

Spurious wakeups occur if a signal is delivered to the blocked thread, so, an application should not

assume that the condition changed upon successful return from this service.

Even if the mutex mx is recursive and its recursion count is greater than one on entry, it is unlocked

before blocking the caller, and the recursion count is restored once the mutex is re-acquired by this

service before returning.

Once a thread is blocked on a condition variable, a dynamic binding is formed between the condition
vairable cnd and the mutex mx; if another thread calls this service specifying cnd as a condition variable

but another mutex than mx, this service returns immediately with the EINVAL status.

This service is a cancellation point for Xenomai POSIX skin threads (created with the pthread_create()
service). When such a thread is cancelled while blocked in a call to this service, the mutex mx is

re-acquired before the cancellation cleanup handlers are called.

Parameters

Generated on Sun Oct 13 2013 19:13:26 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/pthread_cond_timedwait.html

22 Module Documentation

cnd the condition variable to wait for;

mx the mutex associated with cnd.

Returns

0 on success,
an error number if:

• EPERM, the caller context is invalid;

• EINVAL, the specified condition variable or mutex is invalid;

• EPERM, the specified condition variable is not process-shared and does not belong to the

current process;

• EINVAL, another thread is currently blocked on cnd using another mutex than mx;

• EPERM, the specified mutex is not owned by the caller.

Valid contexts:

• Xenomai kernel-space thread;

• Xenomai user-space thread (switches to primary mode).

See Also

Specification.

3.3.2.7 int pthread condattr destroy (pthread condattr t ∗ attr)

Destroy a condition variable attributes object.

This service destroys the condition variable attributes object attr. The object becomes invalid for all
condition variable services (they all return EINVAL) except pthread_condattr_init().

Parameters

attr the initialized mutex attributes object to be destroyed.

Returns

0 on success;

an error number if:

• EINVAL, the mutex attributes object attr is invalid.

See Also

Specification.

3.3.2.8 int pthread condattr getclock (const pthread condattr t ∗ attr, clockid t ∗ clk id)

Get the clock selection attribute from a condition variable attributes object.

This service stores, at the address clk_id, the value of the clock attribute in the condition variable at-
tributes object attr.

See pthread_cond_timedwait() documentation for a description of the effect of this attribute on a condi-

tion variable. The clock ID returned is CLOCK_REALTIME or CLOCK_MONOTONIC.

Generated on Sun Oct 13 2013 19:13:26 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/pthread_cond_wait.html
http://www.opengroup.org/onlinepubs/000095399/functions/pthread_condattr_destroy.html

3.3 Condition variables services. 23

Parameters

attr an initialized condition variable attributes object,

clk_id address where the clock attribute value will be stored on success.

Returns

0 on success,
an error number if:

• EINVAL, the attribute object attr is invalid.

See Also

Specification.

3.3.2.9 int pthread condattr getpshared (const pthread condattr t ∗ attr, int ∗ pshared)

Get the process-shared attribute from a condition variable attributes object.

This service stores, at the address pshared, the value of the pshared attribute in the condition variable

attributes object attr.

The pshared attribute may only be one of PTHREAD_PROCESS_PRIVATE or PTHREAD_PROCESS-
_SHARED. See pthread_condattr_setpshared() for the meaning of these two constants.

Parameters

attr an initialized condition variable attributes object.

pshared address where the value of the pshared attribute will be stored on success.

Returns

0 on success,
an error number if:

• EINVAL, the pshared address is invalid;

• EINVAL, the condition variable attributes object attr is invalid.

See Also

Specification.

3.3.2.10 int pthread condattr init (pthread condattr t ∗ attr)

Initialize a condition variable attributes object.

This services initializes the condition variable attributes object attr with default values for all attributes.

Default value are:

• for the clock attribute, CLOCK_REALTIME;

• for the pshared attribute PTHREAD_PROCESS_PRIVATE.

If this service is called specifying a condition variable attributes object that was already initialized, the

attributes object is reinitialized.

Parameters

Generated on Sun Oct 13 2013 19:13:26 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/pthread_condattr_getclock.html
http://www.opengroup.org/onlinepubs/000095399/functions/pthread_condattr_getpshared.html

24 Module Documentation

attr the condition variable attributes object to be initialized.

Returns

0 on success;
an error number if:

• ENOMEM, the condition variable attribute object pointer attr is NULL.

See Also

Specification.

3.3.2.11 int pthread condattr setclock (pthread condattr t ∗ attr, clockid t clk id)

Set the clock selection attribute of a condition variable attributes object.

This service set the clock attribute of the condition variable attributes object attr.

See pthread_cond_timedwait() documentation for a description of the effect of this attribute on a condi-

tion variable.

Parameters

attr an initialized condition variable attributes object,

clk_id value of the clock attribute, may be CLOCK_REALTIME or CLOCK_MONOTONIC.

Returns

0 on success,
an error number if:

• EINVAL, the condition variable attributes object attr is invalid;

• EINVAL, the value of clk_id is invalid for the clock attribute.

See Also

Specification.

3.3.2.12 int pthread condattr setpshared (pthread condattr t ∗ attr, int pshared)

Set the process-shared attribute of a condition variable attributes object.

This service set the pshared attribute of the condition variable attributes object attr.

Parameters

attr an initialized condition variable attributes object.

pshared value of the pshared attribute, may be one of:

• PTHREAD_PROCESS_PRIVATE, meaning that a condition variable created

with the attributes object attr will only be accessible by threads within the same

process as the thread that initialized the condition variable;

• PTHREAD_PROCESS_SHARED, meaning that a condition variable created
with the attributes object attr will be accessible by any thread that has access to

the memory where the condition variable is allocated.

Generated on Sun Oct 13 2013 19:13:26 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/pthread_condattr_init.html
http://www.opengroup.org/onlinepubs/000095399/functions/pthread_condattr_setclock.html

3.3 Condition variables services. 25

Returns

0 on success,

an error status if:

• EINVAL, the condition variable attributes object attr is invalid;

• EINVAL, the value of pshared is invalid.

See Also

Specification.

Generated on Sun Oct 13 2013 19:13:26 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/pthread_condattr_setpshared.html

26 Module Documentation

3.4 Interruptions management services.

Interruptions management services.

Collaboration diagram for Interruptions management services.:

POSIX skin.
Interruptions management

 services.

Functions

• int pthread_intr_attach_np (pthread_intr_t ∗intrp, unsigned irq, xnisr_t isr, xniack_t iack)

Create and attach an interrupt object.

• int pthread_intr_detach_np (pthread_intr_t intr)

Destroy an interrupt object.

• int pthread_intr_control_np (pthread_intr_t intr, int cmd)

Control the state of an interrupt channel.

• int pthread_intr_wait_np (pthread_intr_t intr, const struct timespec ∗to)

Wait for the next interruption.

3.4.1 Detailed Description

Interruptions management services. The services described here allow applications written using the

POSIX skin to handle interrupts, either in kernel-space or in user-space.

Note however, that it is recommended to use the standardized driver API of the RTDM skin (see rtdm).

3.4.2 Function Documentation

3.4.2.1 int pthread intr attach np (pthread intr t ∗ intrp, unsigned irq, xnisr t isr, xniack t iack)

Create and attach an interrupt object.

This service creates and attaches an interrupt object.

In kernel-space:

This service installs isr as the handler for the interrupt irq. If iack is not null it is a custom interrupt
acknowledge routine.

When called upon reception of an interrupt, the isr function is passed the address of an underlying

xnintr_t object, and should use the macro PTHREAD_IDESC() to get the pthread_intr_t object. The
meaning of the isr and iack function and what they should return is explained in xnintr_init() documenta-

tion.

This service is a non-portable extension of the POSIX interface.

Parameters

intrp address where the created interrupt object identifier will be stored on success;

irq IRQ channel;

isr interrupt handling routine;

iack if not NULL, optional interrupt acknowledge routine.
Generated on Sun Oct 13 2013 19:13:26 for Xenomai POSIX skin API by Doxygen

$group__posix.html

3.4 Interruptions management services. 27

In user-space:

The prototype of this service is :

int pthread_intr_attach_np (pthread_intr_t ∗intrp, unsigned irq, int mode);

This service causes the installation of a default interrupt handler which unblocks any Xenomai user-
space interrupt server thread blocked in a call to pthread_intr_wait_np(), and returns a value depending

on the mode parameter.

Parameters:

intrp and irq have the same meaning as in kernel-space; mode is a bitwise OR of the following
values:

• PTHREAD_INOAUTOENA, meaning that the interrupt should not be automatically re-enabled.

• PTHREAD_IPROPAGATE, meaning that the interrupt should be propagated to lower prior-

ity domains. In effect, PTHREAD_IPROPAGATE implies PTHREAD_INOAUTOENA since it
would make no sense to re-enable the interrupt channel before the next domain down the

pipeline has had a chance to process the propagated interrupt.

This service is intended to be used in conjunction with the pthread_intr_wait_np() service.

The return values are identical in kernel-space and user-space.

Return values

0 on success;

-1 with errno set if:

• ENOSYS, kernel-space Xenomai POSIX skin was built without support

for interrupts, use RTDM or enable CONFIG_XENO_OPT_POSIX_INTR in

kernel configuration;

• ENOMEM, insufficient memory exists in the system heap to create the in-

terrupt object, increase CONFIG_XENO_OPT_SYS_HEAPSZ;

• EINVAL, a low-level error occured while attaching the interrupt;

• EBUSY, an interrupt handler was already registered for the irq line irq.

References pthread_intr_detach_np().

3.4.2.2 int pthread intr control np (pthread intr t intr, int cmd)

Control the state of an interrupt channel.

This service allow to enable or disable an interrupt channel.

This service is a non-portable extension of the POSIX interface.

Parameters

intr identifier of the interrupt to be enabled or disabled.

cmd one of PTHREAD_IENABLE or PTHREAD_IDISABLE.

Generated on Sun Oct 13 2013 19:13:26 for Xenomai POSIX skin API by Doxygen

28 Module Documentation

Return values

0 on success;

-1 with errno set if:

• ENOSYS, kernel-space Xenomai POSIX skin was built without support
for interrupts, use RTDM or enable CONFIG_XENO_OPT_POSIX_INTR in

kernel configuration;

• EINVAL, the identifier intr or cmd is invalid;

• EPERM, the interrupt intr does not belong to the current process.

3.4.2.3 int pthread intr detach np (pthread intr t intr)

Destroy an interrupt object.

This service destroys the interrupt object intr. The memory allocated for this object is returned to the

system heap, so further references using the same object identifier are not guaranteed to fail.

If a user-space interrupt server is blocked in a call to pthread_intr_wait_np(), it is unblocked and the

blocking service returns with an error of EIDRM.

This service is a non-portable extension of the POSIX interface.

Parameters

intr identifier of the interrupt object to be destroyed.

Return values

0 on success;

-1 with errno set if:

• ENOSYS, kernel-space Xenomai POSIX skin was built without support

for interrupts, use RTDM or enable CONFIG_XENO_OPT_POSIX_INTR in

kernel configuration;

• EINVAL, the interrupt object intr is invalid;

• EPERM, the interrupt intr does not belong to the current process.

Referenced by pthread_intr_attach_np().

3.4.2.4 int pthread intr wait np (pthread intr t intr, const struct timespec ∗ to)

Wait for the next interruption.

This service is used by user-space interrupt server threads, to wait, if no interrupt is pending, for the
next interrupt.

This service is a cancelation point. If a thread is canceled while blocked in a call to this service, no

interruption notification is lost.

This service is a non-portable extension of the POSIX interface.

Parameters

intr interrupt object identifier;

to if not NULL, timeout, expressed as a time interval.

Generated on Sun Oct 13 2013 19:13:26 for Xenomai POSIX skin API by Doxygen

3.4 Interruptions management services. 29

Returns

the number of interrupt received on success;

-1 with errno set if:

• ENOSYS, kernel-space Xenomai POSIX skin was built without support for interrupts, use RT-
DM or enable CONFIG_XENO_OPT_POSIX_INTR in kernel configuration;

• EIDRM, the interrupt object was deleted;

• EPERM, the interrupt intr does not belong to the current process;

• ETIMEDOUT, the timeout specified by to expired;

• EINTR, pthread_intr_wait_np() was interrupted by a signal.

Generated on Sun Oct 13 2013 19:13:26 for Xenomai POSIX skin API by Doxygen

30 Module Documentation

3.5 POSIX skin.

Xenomai POSIX skin is an implementation of a small subset of the Single Unix specification over Xeno-
mai generic RTOS core.

Collaboration diagram for POSIX skin.:

Threads management
 services.

POSIX skin.

Condition variables
 services.

Mutex services.

Message queues services.

Interruptions management
 services.

Thread-specific data.

Clocks and timers services.

Shared memory services.

Semaphores services.

Signals services.

Modules

• Clocks and timers services.

Clocks and timers services.

• Condition variables services.

Condition variables services.

• Interruptions management services.

Generated on Sun Oct 13 2013 19:13:26 for Xenomai POSIX skin API by Doxygen

$group__posix__thread.html
$group__posix__cond.html
$group__posix__mutex.html
$group__posix__mq.html
$group__posix__intr.html
$group__posix__tsd.html
$group__posix__time.html
$group__posix__shm.html
$group__posix__sem.html
$group__posix__signal.html

3.5 POSIX skin. 31

Interruptions management services.

• Message queues services.

Message queues services.

• Mutex services.

Mutex services.

• Semaphores services.

Semaphores services.

• Shared memory services.

Shared memory services.

• Signals services.

Signals management services.

• Threads management services.

Threads management services.

• Thread-specific data.

Thread-specific data.

3.5.1 Detailed Description

Xenomai POSIX skin is an implementation of a small subset of the Single Unix specification over Xeno-

mai generic RTOS core. The following table gives equivalence between native API services and POSIX

services.

Native API services POSIX API services
alarm Clocks and timers services.

cond Condition variables services.
event no direct equivalence,

see Condition variables services.

native_heap Shared memory services.
interrupt Interruptions management services.

mutex Mutex services.

pipe no direct equivalence,
see Message queues services.

native_queue Message queues services.
semaphore Semaphores services.

task Threads management services.

native_timer Clocks and timers services.

Generated on Sun Oct 13 2013 19:13:26 for Xenomai POSIX skin API by Doxygen

32 Module Documentation

3.6 Message queues services.

Message queues services.

Collaboration diagram for Message queues services.:

POSIX skin. Message queues services.

Functions

• mqd_t mq_open (const char ∗name, int oflags,...)

Open a message queue.

• int mq_close (mqd_t fd)

Close a message queue.

• int mq_unlink (const char ∗name)

Unlink a message queue.

• int mq_send (mqd_t fd, const char ∗buffer, size_t len, unsigned prio)

Send a message to a message queue.

• int mq_timedsend (mqd_t fd, const char ∗buffer, size_t len, unsigned prio, const struct timespec
∗abs_timeout)

Attempt, during a bounded time, to send a message to a message queue.

• ssize_t mq_receive (mqd_t fd, char ∗buffer, size_t len, unsigned ∗priop)

Receive a message from a message queue.

• ssize_t mq_timedreceive (mqd_t fd, char ∗__restrict__ buffer, size_t len, unsigned ∗__restrict__

priop, const struct timespec ∗__restrict__ abs_timeout)

Attempt, during a bounded time, to receive a message from a message queue.

• int mq_getattr (mqd_t fd, struct mq_attr ∗attr)

Get the attributes object of a message queue.

• int mq_setattr (mqd_t fd, const struct mq_attr ∗__restrict__ attr, struct mq_attr ∗__restrict__ oattr)

Set flags of a message queue.

• int mq_notify (mqd_t fd, const struct sigevent ∗evp)

Register the current thread to be notified of message arrival at an empty message queue.

3.6.1 Detailed Description

Message queues services. A message queue allow exchanging data between real-time threads. For a
POSIX message queue, maximum message length and maximum number of messages are fixed when

it is created with mq_open().

3.6.2 Function Documentation

3.6.2.1 int mq close (mqd t fd)

Close a message queue.

This service closes the message queue descriptor fd. The message queue is destroyed only when all

open descriptors are closed, and when unlinked with a call to the mq_unlink() service.

Parameters

fd message queue descriptor.

Generated on Sun Oct 13 2013 19:13:26 for Xenomai POSIX skin API by Doxygen

$group__posix.html

3.6 Message queues services. 33

Return values

0 on success;

-1 with errno set if:

• EBADF, fd is an invalid message queue descriptor;

• EPERM, the caller context is invalid.

Valid contexts:

• kernel module initialization or cleanup routine;

• kernel-space cancellation cleanup routine;

• user-space thread (Xenomai threads switch to secondary mode);

• user-space cancellation cleanup routine.

See Also

Specification.

3.6.2.2 int mq getattr (mqd t fd, struct mq attr ∗ attr)

Get the attributes object of a message queue.

This service stores, at the address attr, the attributes of the messages queue descriptor fd.

The following attributes are set:

• mq_flags, flags of the message queue descriptor fd;

• mq_maxmsg, maximum number of messages in the message queue;

• mq_msgsize, maximum message size;

• mq_curmsgs, number of messages currently in the queue.

Parameters

fd message queue descriptor;

attr address where the message queue attributes will be stored on success.

Return values

0 on success;

-1 with errno set if:

• EBADF, fd is not a valid descriptor.

See Also

Specification.

3.6.2.3 int mq notify (mqd t fd, const struct sigevent ∗ evp)

Register the current thread to be notified of message arrival at an empty message queue.

If evp is not NULL and is the address of a sigevent structure with the sigev_notify member set to SIGE-
V_SIGNAL, the current thread will be notified by a signal when a message is sent to the message queue

Generated on Sun Oct 13 2013 19:13:26 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/mq_close.html
http://www.opengroup.org/onlinepubs/000095399/functions/mq_getattr.html

34 Module Documentation

fd, the queue is empty, and no thread is blocked in call to mq_receive() or mq_timedreceive(). After the
notification, the thread is unregistered.

If evp is NULL or the sigev_notify member is SIGEV_NONE, the current thread is unregistered.

Only one thread may be registered at a time.

If the current thread is not a Xenomai POSIX skin thread (created with pthread_create()), this service
fails.

Note that signals sent to user-space Xenomai POSIX skin threads will cause them to switch to secondary

mode.

Parameters

fd message queue descriptor;

evp pointer to an event notification structure.

Return values

0 on success;

-1 with errno set if:

• EINVAL, evp is invalid;

• EPERM, the caller context is invalid;

• EBADF, fd is not a valid message queue descriptor;

• EBUSY, another thread is already registered.

Valid contexts:

• Xenomai kernel-space POSIX skin thread,

• Xenomai user-space POSIX skin thread (switches to primary mode).

See Also

Specification.

3.6.2.4 mqd t mq open (const char ∗ name, int oflags, ...)

Open a message queue.

This service establishes a connection between the message queue named name and the calling context

(kernel-space as a whole, or user-space process).

One of the following values should be set in oflags:

• O_RDONLY, meaning that the returned queue descriptor may only be used for receiving mes-

sages;

• O_WRONLY, meaning that the returned queue descriptor may only be used for sending messages;

• O_RDWR, meaning that the returned queue descriptor may be used for both sending and receiving

messages.

If no message queue named name exists, and oflags has the O_CREAT bit set, the message queue is

created by this function, taking two more arguments:

• a mode argument, of type mode_t, currently ignored;

• an attr argument, pointer to an mq_attr structure, specifying the attributes of the new message
queue.

Generated on Sun Oct 13 2013 19:13:26 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/mq_notify.html

3.6 Message queues services. 35

If oflags has the two bits O_CREAT and O_EXCL set and the message queue alread exists, this service
fails.

If the O_NONBLOCK bit is set in oflags, the mq_send(), mq_receive(), mq_timedsend() and

mq_timedreceive() services return -1 with errno set to EAGAIN instead of blocking their caller.

The following arguments of the mq_attr structure at the address attr are used when creating a message
queue:

• mq_maxmsg is the maximum number of messages in the queue (128 by default);

• mq_msgsize is the maximum size of each message (128 by default).

name may be any arbitrary string, in which slashes have no particular meaning. However, for portability,
using a name which starts with a slash and contains no other slash is recommended.

Parameters

name name of the message queue to open;

oflags flags.

Returns

a message queue descriptor on success;

-1 with errno set if:

• ENAMETOOLONG, the length of the name argument exceeds 64 characters;

• EEXIST, the bits O_CREAT and O_EXCL were set in oflags and the message queue already

exists;

• ENOENT, the bit O_CREAT is not set in oflags and the message queue does not exist;

• ENOSPC, allocation of system memory failed, or insufficient memory exists in the system heap
to create the queue, try increasing CONFIG_XENO_OPT_SYS_HEAPSZ;

• EPERM, attempting to create a message queue from an invalid context;

• EINVAL, the attr argument is invalid;

• EMFILE, too many descriptors are currently open.

Valid contexts:

When creating a message queue, only the following contexts are valid:

• kernel module initialization or cleanup routine;

• user-space thread (Xenomai threads switch to secondary mode).

See Also

Specification.

3.6.2.5 ssize t mq receive (mqd t fd, char ∗ buffer, size t len, unsigned ∗ priop)

Receive a message from a message queue.

If the message queue fd is not empty and if len is greater than the mq_msgsize of the message queue,

this service copies, at the address buffer, the queued message with the highest priority.

If the queue is empty and the flag O_NONBLOCK is not set for the descriptor fd, the calling thread is
suspended until some message is sent to the queue. If the queue is empty and the flag O_NONBLOCK
is set for the descriptor fd, this service returns immediately a value of -1 with errno set to EAGAIN.

Parameters

Generated on Sun Oct 13 2013 19:13:26 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/mq_open.html

36 Module Documentation

fd the queue descriptor;

buffer the address where the received message will be stored on success;

len buffer length;

priop address where the priority of the received message will be stored on success.

Returns

the message length, and copy a message at the address buffer on success;
-1 with no message unqueued and errno set if:

• EBADF, fd is not a valid descriptor open for reading;

• EMSGSIZE, the length len is lesser than the message queue mq_msgsize attribute;

• EAGAIN, the queue is empty, and the flag O_NONBLOCK is set for the descriptor fd;

• EPERM, the caller context is invalid;

• EINTR, the service was interrupted by a signal.

Valid contexts:

• Xenomai kernel-space thread,

• Xenomai user-space thread (switches to primary mode).

See Also

Specification.

3.6.2.6 int mq send (mqd t fd, const char ∗ buffer, size t len, unsigned prio)

Send a message to a message queue.

If the message queue fd is not full, this service sends the message of length len pointed to by the

argument buffer, with priority prio. A message with greater priority is inserted in the queue before a

message with lower priority.

If the message queue is full and the flag O_NONBLOCK is not set, the calling thread is suspended until
the queue is not full. If the message queue is full and the flag O_NONBLOCK is set, the message is not

sent and the service returns immediately a value of -1 with errno set to EAGAIN.

Parameters

fd message queue descriptor;

buffer pointer to the message to be sent;

len length of the message;

prio priority of the message.

Returns

0 and send a message on success;

-1 with no message sent and errno set if:

• EBADF, fd is not a valid message queue descriptor open for writing;

• EMSGSIZE, the message length len exceeds the mq_msgsize attribute of the message queue;

• EAGAIN, the flag O_NONBLOCK is set for the descriptor fd and the message queue is full;

• EPERM, the caller context is invalid;

• EINTR, the service was interrupted by a signal.

Generated on Sun Oct 13 2013 19:13:26 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/mq_receive.html

3.6 Message queues services. 37

Valid contexts:

• Xenomai kernel-space thread,

• Xenomai user-space thread (switches to primary mode).

See Also

Specification.

3.6.2.7 int mq setattr (mqd t fd, const struct mq attr ∗ restrict attr, struct mq attr ∗ restrict oattr)

Set flags of a message queue.

This service sets the flags of the fd descriptor to the value of the member mq_flags of the mq_attr
structure pointed to by attr.

The previous value of the message queue attributes are stored at the address oattr if it is not NULL.

Only setting or clearing the O_NONBLOCK flag has an effect.

Parameters

fd message queue descriptor;

attr pointer to new attributes (only mq_flags is used);

oattr if not NULL, address where previous message queue attributes will be stored on
success.

Return values

0 on success;

-1 with errno set if:

• EBADF, fd is not a valid message queue descriptor.

See Also

Specification.

3.6.2.8 ssize t mq timedreceive (mqd t fd, char ∗ restrict buffer, size t len, unsigned ∗ restrict priop, const struct

timespec ∗ restrict abs timeout)

Attempt, during a bounded time, to receive a message from a message queue.

This service is equivalent to mq_receive(), except that if the flag O_NONBLOCK is not set for the de-

scriptor fd and the message queue is empty, the calling thread is only suspended until the timeout
abs_timeout expires.

Parameters

fd the queue descriptor;

buffer the address where the received message will be stored on success;

len buffer length;

priop address where the priority of the received message will be stored on success.

abs_timeout the timeout, expressed as an absolute value of the CLOCK_REALTIME clock.

Generated on Sun Oct 13 2013 19:13:26 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/mq_send.html
http://www.opengroup.org/onlinepubs/000095399/functions/mq_setattr.html

38 Module Documentation

Returns

the message length, and copy a message at the address buffer on success;

-1 with no message unqueued and errno set if:

• EBADF, fd is not a valid descriptor open for reading;

• EMSGSIZE, the length len is lesser than the message queue mq_msgsize attribute;

• EAGAIN, the queue is empty, and the flag O_NONBLOCK is set for the descriptor fd;

• EPERM, the caller context is invalid;

• EINTR, the service was interrupted by a signal;

• ETIMEDOUT, the specified timeout expired.

Valid contexts:

• Xenomai kernel-space thread,

• Xenomai user-space thread (switches to primary mode).

See Also

Specification.

3.6.2.9 int mq timedsend (mqd t fd, const char ∗ buffer, size t len, unsigned prio, const struct timespec ∗ abs timeout)

Attempt, during a bounded time, to send a message to a message queue.

This service is equivalent to mq_send(), except that if the message queue is full and the flag O_NONB-
LOCK is not set for the descriptor fd, the calling thread is only suspended until the timeout specified by

abs_timeout expires.

Parameters

fd message queue descriptor;

buffer pointer to the message to be sent;

len length of the message;

prio priority of the message;

abs_timeout the timeout, expressed as an absolute value of the CLOCK_REALTIME clock.

Returns

0 and send a message on success;

-1 with no message sent and errno set if:

• EBADF, fd is not a valid message queue descriptor open for writing;

• EMSGSIZE, the message length exceeds the mq_msgsize attribute of the message queue;

• EAGAIN, the flag O_NONBLOCK is set for the descriptor fd and the message queue is full;

• EPERM, the caller context is invalid;

• ETIMEDOUT, the specified timeout expired;

• EINTR, the service was interrupted by a signal.

Valid contexts:

• Xenomai kernel-space thread,

• Xenomai user-space thread (switches to primary mode).

See Also

Specification.

Generated on Sun Oct 13 2013 19:13:26 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/mq_timedreceive.html
http://www.opengroup.org/onlinepubs/000095399/functions/mq_timedsend.html

3.6 Message queues services. 39

3.6.2.10 int mq unlink (const char ∗ name)

Unlink a message queue.

This service unlinks the message queue named name. The message queue is not destroyed until all

queue descriptors obtained with the mq_open() service are closed with the mq_close() service. How-

ever, after a call to this service, the unlinked queue may no longer be reached with the mq_open()
service.

Parameters

name name of the message queue to be unlinked.

Return values

0 on success;

-1 with errno set if:

• EPERM, the caller context is invalid;

• ENAMETOOLONG, the length of the name argument exceeds 64 charac-

ters;

• ENOENT, the message queue does not exist.

Valid contexts:

• kernel module initialization or cleanup routine;

• kernel-space cancellation cleanup routine;

• user-space thread (Xenomai threads switch to secondary mode);

• user-space cancellation cleanup routine.

See Also

Specification.

Generated on Sun Oct 13 2013 19:13:26 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/mq_unlink.html

40 Module Documentation

3.7 Mutex services.

Mutex services.

Collaboration diagram for Mutex services.:

POSIX skin. Mutex services.

Functions

• int pthread_mutex_init (pthread_mutex_t ∗mx, const pthread_mutexattr_t ∗attr)

Initialize a mutex.

• int pthread_mutex_destroy (pthread_mutex_t ∗mx)

Destroy a mutex.

• int pthread_mutex_trylock (pthread_mutex_t ∗mx)

Attempt to lock a mutex.

• int pthread_mutex_lock (pthread_mutex_t ∗mx)

Lock a mutex.

• int pthread_mutex_timedlock (pthread_mutex_t ∗mx, const struct timespec ∗to)

Attempt, during a bounded time, to lock a mutex.

• int pthread_mutex_unlock (pthread_mutex_t ∗mx)

Unlock a mutex.

• int pthread_mutexattr_init (pthread_mutexattr_t ∗attr)

Initialize a mutex attributes object.

• int pthread_mutexattr_destroy (pthread_mutexattr_t ∗attr)

Destroy a mutex attributes object.

• int pthread_mutexattr_gettype (const pthread_mutexattr_t ∗attr, int ∗type)

Get the mutex type attribute from a mutex attributes object.

• int pthread_mutexattr_settype (pthread_mutexattr_t ∗attr, int type)

Set the mutex type attribute of a mutex attributes object.

• int pthread_mutexattr_getprotocol (const pthread_mutexattr_t ∗attr, int ∗proto)

Get the protocol attribute from a mutex attributes object.

• int pthread_mutexattr_setprotocol (pthread_mutexattr_t ∗attr, int proto)

Set the protocol attribute of a mutex attributes object.

• int pthread_mutexattr_getpshared (const pthread_mutexattr_t ∗attr, int ∗pshared)

Get the process-shared attribute of a mutex attributes object.

• int pthread_mutexattr_setpshared (pthread_mutexattr_t ∗attr, int pshared)

Set the process-shared attribute of a mutex attributes object.

3.7.1 Detailed Description

Mutex services. A mutex is a MUTual EXclusion device, and is useful for protecting shared data struc-
tures from concurrent modifications, and implementing critical sections and monitors.

A mutex has two possible states: unlocked (not owned by any thread), and locked (owned by one

thread). A mutex can never be owned by two different threads simultaneously. A thread attempting to

lock a mutex that is already locked by another thread is suspended until the owning thread unlocks the
mutex first.

Generated on Sun Oct 13 2013 19:13:26 for Xenomai POSIX skin API by Doxygen

$group__posix.html

3.7 Mutex services. 41

Before it can be used, a mutex has to be initialized with pthread_mutex_init(). An attribute ob-
ject, which reference may be passed to this service, allows to select the features of the cre-

ated mutex, namely its type (see pthread_mutexattr_settype()), the priority protocol it uses (see
pthread_mutexattr_setprotocol()) and whether it may be shared between several processes (see

pthread_mutexattr_setpshared()).

By default, Xenomai POSIX skin mutexes are of the normal type, use no priority protocol and may not

be shared between several processes.

Note that only pthread_mutex_init() may be used to initialize a mutex, using the static initializer PTHRE-
AD_MUTEX_INITIALIZER is not supported.

3.7.2 Function Documentation

3.7.2.1 int pthread mutex destroy (pthread mutex t ∗ mx)

Destroy a mutex.

This service destroys the mutex mx, if it is unlocked and not referenced by any condition vari-
able. The mutex becomes invalid for all mutex services (they all return the EINVAL error) except

pthread_mutex_init().

Parameters

mx the mutex to be destroyed.

Returns

0 on success,

an error number if:

• EINVAL, the mutex mx is invalid;

• EPERM, the mutex is not process-shared and does not belong to the current process;

• EBUSY, the mutex is locked, or used by a condition variable.

See Also

Specification.

3.7.2.2 int pthread mutex init (pthread mutex t ∗ mx, const pthread mutexattr t ∗ attr)

Initialize a mutex.

This services initializes the mutex mx, using the mutex attributes object attr. If attr is NULL, default
attributes are used (see pthread_mutexattr_init()).

Parameters

mx the mutex to be initialized;

attr the mutex attributes object.

Returns

0 on success,

an error number if:

• EINVAL, the mutex attributes object attr is invalid or uninitialized;

• EBUSY, the mutex mx was already initialized;

Generated on Sun Oct 13 2013 19:13:26 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/pthread_mutex_destroy.html

42 Module Documentation

• ENOMEM, insufficient memory exists in the system heap to initialize the mutex, increase CO-
NFIG_XENO_OPT_SYS_HEAPSZ.

• EAGAIN, insufficient memory exists in the semaphore heap to initialize the mutex, increase

CONFIG_XENO_OPT_GLOBAL_SEM_HEAPSZ for a process-shared mutex, or CONFG_X-
ENO_OPT_SEM_HEAPSZ for a process-private mutex.

See Also

Specification.

3.7.2.3 int pthread mutex lock (pthread mutex t ∗ mx)

Lock a mutex.

This service attempts to lock the mutex mx. If the mutex is free, it becomes locked. If it was locked by

another thread than the current one, the current thread is suspended until the mutex is unlocked. If it

was already locked by the current mutex, the behaviour of this service depends on the mutex type :

• for mutexes of the PTHREAD_MUTEX_NORMAL type, this service deadlocks;

• for mutexes of the PTHREAD_MUTEX_ERRORCHECK type, this service returns the EDEADLK
error number;

• for mutexes of the PTHREAD_MUTEX_RECURSIVE type, this service increments the lock recur-
sion count and returns 0.

Parameters

mx the mutex to be locked.

Returns

0 on success
an error number if:

• EPERM, the caller context is invalid;

• EINVAL, the mutex mx is invalid;

• EPERM, the mutex is not process-shared and does not belong to the current process;

• EDEADLK, the mutex is of the PTHREAD_MUTEX_ERRORCHECK type and was already
locked by the current thread;

• EAGAIN, the mutex is of the PTHREAD_MUTEX_RECURSIVE type and the maximum number

of recursive locks has been exceeded.

Valid contexts:

• Xenomai kernel-space thread;

• Xenomai user-space thread (switches to primary mode).

See Also

Specification.

3.7.2.4 int pthread mutex timedlock (pthread mutex t ∗ mx, const struct timespec ∗ to)

Attempt, during a bounded time, to lock a mutex.

Generated on Sun Oct 13 2013 19:13:26 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/pthread_mutex_init.html
http://www.opengroup.org/onlinepubs/000095399/functions/pthread_mutex_lock.html

3.7 Mutex services. 43

This service is equivalent to pthread_mutex_lock(), except that if the mutex mx is locked by another
thread than the current one, this service only suspends the current thread until the timeout specified by

to expires.

Parameters

mx the mutex to be locked;

to the timeout, expressed as an absolute value of the CLOCK_REALTIME clock.

Returns

0 on success;

an error number if:

• EPERM, the caller context is invalid;

• EINVAL, the mutex mx is invalid;

• EPERM, the mutex is not process-shared and does not belong to the current process;

• ETIMEDOUT, the mutex could not be locked and the specified timeout expired;

• EDEADLK, the mutex is of the PTHREAD_MUTEX_ERRORCHECK type and the mutex was
already locked by the current thread;

• EAGAIN, the mutex is of the PTHREAD_MUTEX_RECURSIVE type and the maximum number

of recursive locks has been exceeded.

Valid contexts:

• Xenomai kernel-space thread;

• Xenomai user-space thread (switches to primary mode).

See Also

Specification.

3.7.2.5 int pthread mutex trylock (pthread mutex t ∗ mx)

Attempt to lock a mutex.

This service is equivalent to pthread_mutex_lock(), except that if the mutex mx is locked by another
thread than the current one, this service returns immediately.

Parameters

mx the mutex to be locked.

Returns

0 on success;
an error number if:

• EPERM, the caller context is invalid;

• EINVAL, the mutex is invalid;

• EPERM, the mutex is not process-shared and does not belong to the current process;

• EBUSY, the mutex was locked by another thread than the current one;

• EAGAIN, the mutex is recursive, and the maximum number of recursive locks has been ex-

ceeded.

Valid contexts:

• Xenomai kernel-space thread,

Generated on Sun Oct 13 2013 19:13:26 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/pthread_mutex_timedlock.html

44 Module Documentation

• Xenomai user-space thread (switches to primary mode).

See Also

Specification.

3.7.2.6 int pthread mutex unlock (pthread mutex t ∗ mx)

Unlock a mutex.

This service unlocks the mutex mx. If the mutex is of the PTHREAD_MUTEX_RECURSIVE type and

the locking recursion count is greater than one, the lock recursion count is decremented and the mutex
remains locked.

Attempting to unlock a mutex which is not locked or which is locked by another thread than the current

one yields the EPERM error, whatever the mutex type attribute.

Parameters

mx the mutex to be released.

Returns

0 on success;
an error number if:

• EPERM, the caller context is invalid;

• EINVAL, the mutex mx is invalid;

• EPERM, the mutex was not locked by the current thread.

Valid contexts:

• Xenomai kernel-space thread,

• kernel-space cancellation cleanup routine,

• Xenomai user-space thread (switches to primary mode),

• user-space cancellation cleanup routine.

See Also

Specification.

3.7.2.7 int pthread mutexattr destroy (pthread mutexattr t ∗ attr)

Destroy a mutex attributes object.

This service destroys the mutex attributes object attr. The object becomes invalid for all mutex services
(they all return EINVAL) except pthread_mutexattr_init().

Parameters

attr the initialized mutex attributes object to be destroyed.

Generated on Sun Oct 13 2013 19:13:26 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/pthread_mutex_trylock.html
http://www.opengroup.org/onlinepubs/000095399/functions/pthread_mutex_unlock.html

3.7 Mutex services. 45

Returns

0 on success;

an error number if:

• EINVAL, the mutex attributes object attr is invalid.

See Also

Specification.

3.7.2.8 int pthread mutexattr getprotocol (const pthread mutexattr t ∗ attr, int ∗ proto)

Get the protocol attribute from a mutex attributes object.

This service stores, at the address proto, the value of the protocol attribute in the mutex attributes object
attr.

The protcol attribute may only be one of PTHREAD_PRIO_NONE or PTHREAD_PRIO_INHERIT. See

pthread_mutexattr_setprotocol() for the meaning of these two constants.

Parameters

attr an initialized mutex attributes object;

proto address where the value of the protocol attribute will be stored on success.

Returns

0 on success,

an error number if:

• EINVAL, the proto address is invalid;

• EINVAL, the mutex attributes object attr is invalid.

See Also

Specification.

3.7.2.9 int pthread mutexattr getpshared (const pthread mutexattr t ∗ attr, int ∗ pshared)

Get the process-shared attribute of a mutex attributes object.

This service stores, at the address pshared, the value of the pshared attribute in the mutex attributes

object attr.

The pashared attribute may only be one of PTHREAD_PROCESS_PRIVATE or PTHREAD_PROCES-
S_SHARED. See pthread_mutexattr_setpshared() for the meaning of these two constants.

Parameters

attr an initialized mutex attributes object;

pshared address where the value of the pshared attribute will be stored on success.

Returns

0 on success;

an error number if:

• EINVAL, the pshared address is invalid;

Generated on Sun Oct 13 2013 19:13:26 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/pthread_mutexattr_destroy.html
http://www.opengroup.org/onlinepubs/000095399/functions/pthread_mutexattr_getprotocol.html

46 Module Documentation

• EINVAL, the mutex attributes object attr is invalid.

See Also

Specification.

3.7.2.10 int pthread mutexattr gettype (const pthread mutexattr t ∗ attr, int ∗ type)

Get the mutex type attribute from a mutex attributes object.

This service stores, at the address type, the value of the type attribute in the mutex attributes object attr.

See pthread_mutex_lock() and pthread_mutex_unlock() documentations for a description of the values

of the type attribute and their effect on a mutex.

Parameters

attr an initialized mutex attributes object,

type address where the type attribute value will be stored on success.

Returns

0 on sucess,
an error number if:

• EINVAL, the type address is invalid;

• EINVAL, the mutex attributes object attr is invalid.

See Also

Specification.

3.7.2.11 int pthread mutexattr init (pthread mutexattr t ∗ attr)

Initialize a mutex attributes object.

This services initializes the mutex attributes object attr with default values for all attributes. Default value

are :

• for the type attribute, PTHREAD_MUTEX_NORMAL;

• for the protocol attribute, PTHREAD_PRIO_NONE;

• for the pshared attribute, PTHREAD_PROCESS_PRIVATE.

If this service is called specifying a mutex attributes object that was already initialized, the attributes

object is reinitialized.

Parameters

attr the mutex attributes object to be initialized.

Returns

0 on success;

an error number if:

• ENOMEM, the mutex attributes object pointer attr is NULL.

Generated on Sun Oct 13 2013 19:13:26 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/pthread_mutexattr_getpshared.html
http://www.opengroup.org/onlinepubs/000095399/functions/pthread_mutexattr_gettype.html

3.7 Mutex services. 47

See Also

Specification.

3.7.2.12 int pthread mutexattr setprotocol (pthread mutexattr t ∗ attr, int proto)

Set the protocol attribute of a mutex attributes object.

This service set the type attribute of the mutex attributes object attr.

Parameters

attr an initialized mutex attributes object,

proto value of the protocol attribute, may be one of:

• PTHREAD_PRIO_NONE, meaning that a mutex created with the attributes ob-
ject attr will not follow any priority protocol;

• PTHREAD_PRIO_INHERIT, meaning that a mutex created with the attributes

object attr, will follow the priority inheritance protocol.

The value PTHREAD_PRIO_PROTECT (priority ceiling protocol) is unsupported.

Returns

0 on success,

an error number if:

• EINVAL, the mutex attributes object attr is invalid;

• ENOTSUP, the value of proto is unsupported;

• EINVAL, the value of proto is invalid.

See Also

Specification.

3.7.2.13 int pthread mutexattr setpshared (pthread mutexattr t ∗ attr, int pshared)

Set the process-shared attribute of a mutex attributes object.

This service set the pshared attribute of the mutex attributes object attr.

Parameters

attr an initialized mutex attributes object.

pshared value of the pshared attribute, may be one of:

• PTHREAD_PROCESS_PRIVATE, meaning that a mutex created with the at-
tributes object attr will only be accessible by threads within the same process as

the thread that initialized the mutex;

• PTHREAD_PROCESS_SHARED, meaning that a mutex created with the at-
tributes object attr will be accessible by any thread that has access to the mem-

ory where the mutex is allocated.

Generated on Sun Oct 13 2013 19:13:26 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/pthread_mutexattr_init.html
http://www.opengroup.org/onlinepubs/000095399/functions/pthread_mutexattr_setprotocol.html

48 Module Documentation

Returns

0 on success,

an error status if:

• EINVAL, the mutex attributes object attr is invalid;

• EINVAL, the value of pshared is invalid.

See Also

Specification.

3.7.2.14 int pthread mutexattr settype (pthread mutexattr t ∗ attr, int type)

Set the mutex type attribute of a mutex attributes object.

This service set the type attribute of the mutex attributes object attr.

See pthread_mutex_lock() and pthread_mutex_unlock() documentations for a description of the values

of the type attribute and their effect on a mutex.

The PTHREAD_MUTEX_DEFAULT default type is the same as PTHREAD_MUTEX_NORMAL. Note
that using a Xenomai POSIX skin recursive mutex with a Xenomai POSIX skin condition variable is safe

(see pthread_cond_wait() documentation).

Parameters

attr an initialized mutex attributes object,

type value of the type attribute.

Returns

0 on success,

an error number if:

• EINVAL, the mutex attributes object attr is invalid;

• EINVAL, the value of type is invalid for the type attribute.

See Also

Specification.

Generated on Sun Oct 13 2013 19:13:26 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/pthread_mutexattr_setpshared.html
http://www.opengroup.org/onlinepubs/000095399/functions/pthread_mutexattr_settype.html

3.8 Threads scheduling services. 49

3.8 Threads scheduling services.

Thread scheduling services.

Collaboration diagram for Threads scheduling services.:

Threads management
 services.

Threads scheduling
 services.

Functions

• int sched_get_priority_min (int policy)

Get minimum priority of the specified scheduling policy.

• int sched_get_priority_max (int policy)

Get maximum priority of the specified scheduling policy.

• int sched_rr_get_interval (int pid, struct timespec ∗interval)

Get the round-robin scheduling time slice.

• int pthread_getschedparam (pthread_t tid, int ∗pol, struct sched_param ∗par)

Get the scheduling policy and parameters of the specified thread.

• int pthread_getschedparam_ex (pthread_t tid, int ∗pol, struct sched_param_ex ∗par)

Get the extended scheduling policy and parameters of the specified thread.

• int pthread_setschedparam (pthread_t tid, int pol, const struct sched_param ∗par)

Set the scheduling policy and parameters of the specified thread.

• int pthread_setschedparam_ex (pthread_t tid, int pol, const struct sched_param_ex ∗par)

Set the extended scheduling policy and parameters of the specified thread.

• int sched_yield (void)

Yield the processor.

• int sched_setconfig_np (int cpu, int policy, union sched_config ∗config, size_t len)

Load CPU-specific scheduler settings for a given policy.

3.8.1 Detailed Description

Thread scheduling services. Xenomai POSIX skin supports the scheduling policies SCHED_FIFO, SC-

HED_RR, SCHED_SPORADIC, SCHED_TP and SCHED_OTHER.

The SCHED_OTHER policy is mainly useful for user-space non-realtime activities that need to synchro-

nize with real-time activities.

The SCHED_RR policy is only effective if the time base is periodic (i.e. if configured with the compilation

constant CONFIG_XENO_OPT_POSIX_PERIOD or the xeno_nucleus module parameter tick_arg set

to a non null value). The SCHED_RR round-robin time slice is configured with the xeno_posix module
parameter time_slice, as a count of system timer clock ticks.

The SCHED_SPORADIC policy provides a mean to schedule aperiodic or sporadic threads in periodic-

based systems.

The SCHED_TP policy divides the scheduling time into a recurring global frame, which is itself divided
into an arbitrary number of time partitions. Only threads assigned to the current partition are deemed

runnable, and scheduled according to a FIFO-based rule within this partition. When completed, the

current partition is advanced automatically to the next one by the scheduler, and the global time frame
recurs from the first partition defined, when the last partition has ended.

Generated on Sun Oct 13 2013 19:13:26 for Xenomai POSIX skin API by Doxygen

$group__posix__thread.html

50 Module Documentation

The scheduling policy and priority of a thread is set when creating a thread, by using thread creation at-
tributes (see pthread_attr_setinheritsched(), pthread_attr_setschedpolicy() and pthread_attr_setschedparam()),

or when the thread is already running by using the service pthread_setschedparam().

See Also

Specification.

3.8.2 Function Documentation

3.8.2.1 int pthread getschedparam (pthread t tid, int ∗ pol, struct sched param ∗ par)

Get the scheduling policy and parameters of the specified thread.

This service returns, at the addresses pol and par, the current scheduling policy and scheduling param-

eters (i.e. priority) of the Xenomai POSIX skin thread tid. If this service is called from user-space and

tid is not the identifier of a Xenomai POSIX skin thread, this service fallback to Linux regular pthread_-
getschedparam service.

Parameters

tid target thread;

pol address where the scheduling policy of tid is stored on success;

par address where the scheduling parameters of tid is stored on success.

Returns

0 on success;

an error number if:

• ESRCH, tid is invalid.

See Also

Specification.

3.8.2.2 int pthread getschedparam ex (pthread t tid, int ∗ pol, struct sched param ex ∗ par)

Get the extended scheduling policy and parameters of the specified thread.

This service is an extended version of pthread_getschedparam(), that also supports Xenomai-specific
or additional POSIX scheduling policies, which are not available with the host Linux environment.

Typically, SCHED_SPORADIC or SCHED_TP parameters can be retrieved from this call.

Parameters

tid target thread;

pol address where the scheduling policy of tid is stored on success;

par address where the scheduling parameters of tid is stored on success.

Returns

0 on success;

an error number if:

• ESRCH, tid is invalid.

Generated on Sun Oct 13 2013 19:13:26 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/xsh_chap02_08.html#tag_02_08_04
http://www.opengroup.org/onlinepubs/000095399/functions/pthread_getschedparam.html

3.8 Threads scheduling services. 51

See Also

Specification.

Referenced by pthread_create().

3.8.2.3 int pthread setschedparam (pthread t tid, int pol, const struct sched param ∗ par)

Set the scheduling policy and parameters of the specified thread.

This service set the scheduling policy of the Xenomai POSIX skin thread tid to the value pol, and its

scheduling parameters (i.e. its priority) to the value pointed to by par.

When used in user-space, passing the current thread ID as tid argument, this service turns the current

thread into a Xenomai POSIX skin thread. If tid is neither the identifier of the current thread nor the
identifier of a Xenomai POSIX skin thread this service falls back to the regular pthread_setschedparam()

service, hereby causing the current thread to switch to secondary mode if it is Xenomai thread.

Parameters

tid target thread;

pol scheduling policy, one of SCHED_FIFO, SCHED_RR, SCHED_SPORADIC, SCHE-
D_TP or SCHED_OTHER;

par scheduling parameters address.

Returns

0 on success;

an error number if:

• ESRCH, tid is invalid;

• EINVAL, pol or par->sched_priority is invalid;

• EAGAIN, in user-space, insufficient memory exists in the system heap, increase CONFIG_X-
ENO_OPT_SYS_HEAPSZ;

• EFAULT, in user-space, par is an invalid address;

• EPERM, in user-space, the calling process does not have superuser permissions.

See Also

Specification.

Note

When creating or shadowing a Xenomai thread for the first time in user-space, Xenomai installs a handler

for the SIGWINCH signal. If you had installed a handler before that, it will be automatically called by

Xenomai for SIGWINCH signals that it has not sent.

If, however, you install a signal handler for SIGWINCH after creating or shadowing the first Xenomai

thread, you have to explicitly call the function xeno_sigwinch_handler at the beginning of your signal

handler, using its return to know if the signal was in fact an internal signal of Xenomai (in which case
it returns 1), or if you should handle the signal (in which case it returns 0). xeno_sigwinch_handler

prototype is:

int xeno_sigwinch_handler(int sig, siginfo_t ∗si, void ∗ctxt);

Which means that you should register your handler with sigaction, using the SA_SIGINFO flag, and pass
all the arguments you received to xeno_sigwinch_handler.

Referenced by pthread_setschedparam_ex().

Generated on Sun Oct 13 2013 19:13:26 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/pthread_getschedparam.html
http://www.opengroup.org/onlinepubs/000095399/functions/pthread_setschedparam.html

52 Module Documentation

3.8.2.4 int pthread setschedparam ex (pthread t tid, int pol, const struct sched param ex ∗ par)

Set the extended scheduling policy and parameters of the specified thread.

This service is an extended version of pthread_setschedparam(), that supports Xenomai-specific or

additional POSIX scheduling policies, which are not available with the host Linux environment.

Typically, a Xenomai thread policy can be set to SCHED_SPORADIC or SCHED_TP using this call.

Parameters

tid target thread;

pol address where the scheduling policy of tid is stored on success;

par address where the scheduling parameters of tid is stored on success.

Returns

0 on success;

an error number if:

• ESRCH, tid is invalid.

• EINVAL, par contains invalid parameters.

• ENOMEM, lack of memory to perform the operation.

See Also

Specification.

References pthread_setschedparam().

3.8.2.5 int sched get priority max (int policy)

Get maximum priority of the specified scheduling policy.

This service returns the maximum priority of the scheduling policy policy.

Parameters

policy scheduling policy, one of SCHED_FIFO, SCHED_RR, SCHED_SPORADIC, SCHE-

D_TP or SCHED_OTHER.

Return values

0 on success;

-1 with errno set if:

• EINVAL, policy is invalid.

See Also

Specification.

3.8.2.6 int sched get priority min (int policy)

Get minimum priority of the specified scheduling policy.

This service returns the minimum priority of the scheduling policy policy.

Generated on Sun Oct 13 2013 19:13:26 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/pthread_getschedparam.html
http://www.opengroup.org/onlinepubs/000095399/functions/sched_get_priority_max.html

3.8 Threads scheduling services. 53

Parameters

policy scheduling policy, one of SCHED_FIFO, SCHED_RR, SCHED_SPORADIC, SCHE-

D_TP or SCHED_OTHER.

Return values

0 on success;

-1 with errno set if:

• EINVAL, policy is invalid.

See Also

Specification.

3.8.2.7 int sched rr get interval (int pid, struct timespec ∗ interval)

Get the round-robin scheduling time slice.

This service returns the time quantum used by Xenomai POSIX skin SCHED_RR scheduling policy.

In kernel-space, this service only works if pid is zero, in user-space, round-robin scheduling policy is not

supported, and this service not implemented.

Parameters

pid must be zero;

interval address where the round-robin scheduling time quantum will be returned on success.

Return values

0 on success;

-1 with errno set if:

• ESRCH, pid is invalid (not 0).

See Also

Specification.

3.8.2.8 int sched setconfig np (int cpu, int policy, union sched config ∗ config, size t len)

Load CPU-specific scheduler settings for a given policy.

Currently, this call only supports the SCHED_TP policy, for loading the temporal partitions. A configura-
tion is strictly local to the target cpu, and may differ from other processors.

Parameters

cpu processor to load the configuration of.

policy scheduling policy to which the configuration data applies. Currently, only SCHED_TP

is valid.

p a pointer to the configuration data to load for cpu, applicable to policy.

Settings applicable to SCHED_TP:

Generated on Sun Oct 13 2013 19:13:26 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/sched_get_priority_min.html
http://www.opengroup.org/onlinepubs/000095399/functions/sched_rr_get_interval.html

54 Module Documentation

This call installs the temporal partitions for cpu.

• config.tp.windows should be a non-null set of time windows, defining the scheduling time slots for

cpu. Each window defines its offset from the start of the global time frame (windows[].offset), a

duration (windows[].duration), and the partition id it applies to (windows[].ptid).

Time windows must be strictly contiguous, i.e. windows[n].offset + windows[n].duration shall equal
windows[n + 1].offset. If windows[].ptid is in the range [0..CONFIG_XENO_OPT_SCHED_TP_NRP-

ART-1], SCHED_TP threads which belong to the partition being referred to may run for the duration of
the time window.

Time holes may be defined using windows assigned to the pseudo partition #-1, during which no SCH-

ED_TP threads may be scheduled.

• config.tp.nr_windows should define the number of elements present in the config.tp.windows[] ar-

ray.

Parameters

len size of the configuration data (in bytes).

Returns

0 on success;

an error number if:

• EINVAL, cpu is invalid, policy is different from SCHED_TP, SCHED_TP support is not compiled
in (see CONFIG_XENO_OPT_SCHED_TP), len is zero, or p contains invalid parameters.

• ENOMEM, lack of memory to perform the operation.

3.8.2.9 int sched yield (void)

Yield the processor.

This function move the current thread at the end of its priority group.

Return values

0

See Also

Specification.

Generated on Sun Oct 13 2013 19:13:26 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/sched_yield.html

3.9 Semaphores services. 55

3.9 Semaphores services.

Semaphores services.

Collaboration diagram for Semaphores services.:

POSIX skin. Semaphores services.

Functions

• int sem_init (sem_t ∗sm, int pshared, unsigned value)

Initialize an unnamed semaphore.

• int sem_destroy (sem_t ∗sm)

Destroy an unnamed semaphore.

• sem_t ∗ sem_open (const char ∗name, int oflags,...)

Open a named semaphore.

• int sem_close (sem_t ∗sm)

Close a named semaphore.

• int sem_unlink (const char ∗name)

Unlink a named semaphore.

• int sem_trywait (sem_t ∗sm)

Attempt to lock a semaphore.

• int sem_wait (sem_t ∗sm)

Lock a semaphore.

• int sem_timedwait (sem_t ∗sm, const struct timespec ∗abs_timeout)

Attempt, during a bounded time, to lock a semaphore.

• int sem_post (sem_t ∗sm)

Unlock a semaphore.

• int sem_getvalue (sem_t ∗sm, int ∗value)

Get the value of a semaphore.

3.9.1 Detailed Description

Semaphores services. Semaphores are counters for resources shared between threads. The basic

operations on semaphores are: increment the counter atomically, and wait until the counter is non-null

and decrement it atomically.

Semaphores have a maximum value past which they cannot be incremented. The macro SEM_VALU-
E_MAX is defined to be this maximum value.

3.9.2 Function Documentation

3.9.2.1 int sem close (sem t ∗ sm)

Close a named semaphore.

This service closes the semaphore sm. The semaphore is destroyed only when unlinked with a call to

the sem_unlink() service and when each call to sem_open() matches a call to this service.

When a semaphore is destroyed, the memory it used is returned to the system heap, so that further

references to this semaphore are not guaranteed to fail, as is the case for unnamed semaphores.

This service fails if sm is an unnamed semaphore.

Generated on Sun Oct 13 2013 19:13:26 for Xenomai POSIX skin API by Doxygen

$group__posix.html

56 Module Documentation

Parameters

sm the semaphore to be closed.

Return values

0 on success;

-1 with errno set if:

• EINVAL, the semaphore sm is invalid or is an unnamed semaphore.

See Also

Specification.

3.9.2.2 int sem destroy (sem t ∗ sm)

Destroy an unnamed semaphore.

This service destroys the semaphore sm. Threads currently blocked on sm are unblocked and the
service they called return -1 with errno set to EINVAL. The semaphore is then considered invalid by all

semaphore services (they all fail with errno set to EINVAL) except sem_init().

This service fails if sm is a named semaphore.

Parameters

sm the semaphore to be destroyed.

Return values

0 on success,

-1 with errno set if:

• EINVAL, the semaphore sm is invalid or a named semaphore;

• EPERM, the semaphore sm is not process-shared and does not belong to

the current process.

See Also

Specification.

3.9.2.3 int sem getvalue (sem t ∗ sm, int ∗ value)

Get the value of a semaphore.

This service stores at the address value, the current count of the semaphore sm. The state of the
semaphore is unchanged.

If the semaphore is currently locked, the value stored is zero.

Parameters

sm a semaphore;

value address where the semaphore count will be stored on success.

Generated on Sun Oct 13 2013 19:13:26 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/sem_close.html
http://www.opengroup.org/onlinepubs/000095399/functions/sem_destroy.html

3.9 Semaphores services. 57

Return values

0 on success;

-1 with errno set if:

• EINVAL, the semaphore is invalid or uninitialized;

• EPERM, the semaphore sm is not process-shared and does not belong to
the current process.

See Also

Specification.

3.9.2.4 int sem init (sem t ∗ sm, int pshared, unsigned value)

Initialize an unnamed semaphore.

This service initializes the semaphore sm, with the value value.

This service fails if sm is already initialized or is a named semaphore.

Parameters

sm the semaphore to be initialized;

pshared if zero, means that the new semaphore may only be used by threads in the same

process as the thread calling sem_init(); if non zero, means that the new semaphore
may be used by any thread that has access to the memory where the semaphore is

allocated.

value the semaphore initial value.

Return values

0 on success,

-1 with errno set if:

• EBUSY, the semaphore sm was already initialized;

• ENOSPC, insufficient memory exists in the system heap to initialize the

semaphore, increase CONFIG_XENO_OPT_SYS_HEAPSZ;

• EINVAL, the value argument exceeds SEM_VALUE_MAX.

See Also

Specification.

3.9.2.5 sem t∗ sem open (const char ∗ name, int oflags, ...)

Open a named semaphore.

This service establishes a connection between the semaphore named name and the calling context

(kernel-space as a whole, or user-space process).

If no semaphore named name exists and oflags has the O_CREAT bit set, the semaphore is created by
this function, using two more arguments:

• a mode argument, of type mode_t, currently ignored;

• a value argument, of type unsigned, specifying the initial value of the created semaphore.

Generated on Sun Oct 13 2013 19:13:26 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/sem_getvalue.html
http://www.opengroup.org/onlinepubs/000095399/functions/sem_init.html

58 Module Documentation

If oflags has the two bits O_CREAT and O_EXCL set and the semaphore already exists, this service
fails.

name may be any arbitrary string, in which slashes have no particular meaning. However, for portability,

using a name which starts with a slash and contains no other slash is recommended.

If sem_open() is called from the same context (kernel-space as a whole, or user-space process) several
times with the same value of name, the same address is returned.

Parameters

name the name of the semaphore to be created;

oflags flags.

Returns

the address of the named semaphore on success;

SEM_FAILED with errno set if:

• ENAMETOOLONG, the length of the name argument exceeds 64 characters;

• EEXIST, the bits O_CREAT and O_EXCL were set in oflags and the named semaphore already
exists;

• ENOENT, the bit O_CREAT is not set in oflags and the named semaphore does not exist;

• ENOSPC, insufficient memory exists in the system heap to create the semaphore, increase

CONFIG_XENO_OPT_SYS_HEAPSZ;

• EINVAL, the value argument exceeds SEM_VALUE_MAX.

See Also

Specification.

3.9.2.6 int sem post (sem t ∗ sm)

Unlock a semaphore.

This service unlocks the semaphore sm.

If no thread is currently blocked on this semaphore, its count is incremented, otherwise the highest

priority thread is unblocked.

Parameters

sm the semaphore to be unlocked.

Return values

0 on success;

-1 with errno set if:

• EINVAL, the specified semaphore is invalid or uninitialized;

• EPERM, the semaphore sm is not process-shared and does not belong to

the current process;

• EAGAIN, the semaphore count is SEM_VALUE_MAX.

See Also

Specification.

Generated on Sun Oct 13 2013 19:13:26 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/sem_open.html
http://www.opengroup.org/onlinepubs/000095399/functions/sem_post.html

3.9 Semaphores services. 59

3.9.2.7 int sem timedwait (sem t ∗ sm, const struct timespec ∗ abs timeout)

Attempt, during a bounded time, to lock a semaphore.

This serivce is equivalent to sem_wait(), except that the caller is only blocked until the timeout abs_-
timeout expires.

Parameters

sm the semaphore to be locked;

abs_timeout the timeout, expressed as an absolute value of the CLOCK_REALTIME clock.

Return values

0 on success;

-1 with errno set if:

• EPERM, the caller context is invalid;

• EINVAL, the semaphore is invalid or uninitialized;

• EINVAL, the specified timeout is invalid;

• EPERM, the semaphore sm is not process-shared and does not belong to

the current process;

• EINTR, the caller was interrupted by a signal while blocked in this service;

• ETIMEDOUT, the semaphore could not be locked and the specified timeout

expired.

Valid contexts:

• Xenomai kernel-space thread,

• Xenomai user-space thread (switches to primary mode).

See Also

Specification.

3.9.2.8 int sem trywait (sem t ∗ sm)

Attempt to lock a semaphore.

This service is equivalent to sem_wait(), except that it returns immediately if the semaphore sm is

currently locked, and that it is not a cancellation point.

Parameters

sm the semaphore to be locked.

Return values

0 on success;

-1 with errno set if:

• EINVAL, the specified semaphore is invalid or uninitialized;

• EPERM, the semaphore sm is not process-shared and does not belong to

the current process;

• EAGAIN, the specified semaphore is currently locked.

Generated on Sun Oct 13 2013 19:13:26 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/sem_timedwait.html

60 Module Documentation

•

See Also

Specification.

3.9.2.9 int sem unlink (const char ∗ name)

Unlink a named semaphore.

This service unlinks the semaphore named name. This semaphore is not destroyed until all references
obtained with sem_open() are closed by calling sem_close(). However, the unlinked semaphore may no

longer be reached with the sem_open() service.

When a semaphore is destroyed, the memory it used is returned to the system heap, so that further
references to this semaphore are not guaranteed to fail, as is the case for unnamed semaphores.

Parameters

name the name of the semaphore to be unlinked.

Return values

0 on success;

-1 with errno set if:

• ENAMETOOLONG, the length of the name argument exceeds 64 charac-

ters;

• ENOENT, the named semaphore does not exist.

See Also

Specification.

3.9.2.10 int sem wait (sem t ∗ sm)

Lock a semaphore.

This service locks the semaphore sm if it is currently unlocked (i.e. if its value is greater than 0). If the

semaphore is currently locked, the calling thread is suspended until the semaphore is unlocked, or a

signal is delivered to the calling thread.

This service is a cancellation point for Xenomai POSIX skin threads (created with the pthread_create()

service). When such a thread is cancelled while blocked in a call to this service, the semaphore state is

left unchanged before the cancellation cleanup handlers are called.

Parameters

sm the semaphore to be locked.

Generated on Sun Oct 13 2013 19:13:26 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/sem_trywait.html
http://www.opengroup.org/onlinepubs/000095399/functions/sem_unlink.html

3.9 Semaphores services. 61

Return values

0 on success;

-1 with errno set if:

• EPERM, the caller context is invalid;

• EINVAL, the semaphore is invalid or uninitialized;

• EPERM, the semaphore sm is not process-shared and does not belong to

the current process;

• EINTR, the caller was interrupted by a signal while blocked in this service.

Valid contexts:

• Xenomai kernel-space thread,

• Xenomai user-space thread (switches to primary mode).

See Also

Specification.

Generated on Sun Oct 13 2013 19:13:26 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/sem_wait.html

62 Module Documentation

3.10 Shared memory services.

Shared memory services.

Collaboration diagram for Shared memory services.:

POSIX skin. Shared memory services.

Functions

• int shm_open (const char ∗name, int oflags, mode_t mode)

Open a shared memory object.

• int close (int fd)

Close a file descriptor.

• int shm_unlink (const char ∗name)

Unlink a shared memory object.

• int ftruncate (int fd, off_t len)

Truncate a file or shared memory object to a specified length.

• void ∗ mmap (void ∗addr, size_t len, int prot, int flags, int fd, off_t off)

Map pages of memory.

• int munmap (void ∗addr, size_t len)

Unmap pages of memory.

3.10.1 Detailed Description

Shared memory services. Shared memory objects are memory regions that can be mapped into pro-

cesses address space, allowing them to share these regions as well as to share them with kernel-space

modules.

Shared memory are also the only mean by which anonymous POSIX skin synchronization objects (mu-

texes, condition variables or semaphores) may be shared between kernel-space modules and user-

space processes, or between several processes.

3.10.2 Function Documentation

3.10.2.1 int close (int fd)

Close a file descriptor.

This service closes the file descriptor fd. In kernel-space, this service only works for file descriptors

opened with shm_open(), i.e. shared memory objects. A shared memory object is only destroyed
once all file descriptors are closed with this service, it is unlinked with the shm_unlink() service, and all

mappings are unmapped with the munmap() service.

Parameters

fd file descriptor.

Return values

0 on success;

Generated on Sun Oct 13 2013 19:13:26 for Xenomai POSIX skin API by Doxygen

$group__posix.html

3.10 Shared memory services. 63

-1 with errno set if:

• EBADF, fd is not a valid file descriptor (in kernel-space, it was not obtained
with shm_open());

• EPERM, the caller context is invalid.

Valid contexts:

• kernel module initialization or cleanup routine;

• kernel-space cancellation cleanup routine;

• user-space thread (Xenomai threads switch to secondary mode);

• user-space cancellation cleanup routine.

See Also

Specification.

Referenced by shm_open().

3.10.2.2 int ftruncate (int fd, off t len)

Truncate a file or shared memory object to a specified length.

When used in kernel-space, this service set to len the size of a shared memory object opened with
the shm_open() service. In user-space this service falls back to Linux regular ftruncate service for file

descriptors not obtained with shm_open(). When this service is used to increase the size of a shared

memory object, the added space is zero-filled.

Shared memory are suitable for direct memory access (allocated in physically contiguous memory) if
O_DIRECT was passed to shm_open.

Shared memory objects may only be resized if they are not currently mapped.

Parameters

fd file descriptor;

len new length of the underlying file or shared memory object.

Return values

0 on success;

-1 with errno set if:

• EBADF, fd is not a valid file descriptor;

• EPERM, the caller context is invalid;

• EINVAL, the specified length is invalid;

• EINVAL, the architecture can not honour the O_DIRECT flag;

• EINTR, this service was interrupted by a signal;

• EBUSY, fd is a shared memory object descriptor and the underlying shared

memory is currently mapped;

• EFBIG, allocation of system memory failed.

Valid contexts:

• kernel module initialization or cleanup routine;

• user-space thread (Xenomai threads switch to secondary mode).

Generated on Sun Oct 13 2013 19:13:26 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/close.html

64 Module Documentation

See Also

Specification.

Referenced by shm_open().

3.10.2.3 void∗ mmap (void ∗ addr, size t len, int prot, int flags, int fd, off t off)

Map pages of memory.

This service allow shared memory regions to be accessed by the caller.

When used in kernel-space, this service returns the address of the offset off of the shared memory

object underlying fd. The protection flags prot, are only checked for consistency with fd open flags, but

memory protection is unsupported. An existing shared memory region exists before it is mapped, this
service only increments a reference counter.

The only supported value for flags is MAP_SHARED.

When used in user-space, this service maps the specified shared memory region into the caller address-

space. If fd is not a shared memory object descriptor (i.e. not obtained with shm_open()), this service
falls back to the regular Linux mmap service.

Parameters

addr ignored.

len size of the shared memory region to be mapped.

prot protection bits, checked in kernel-space, but only useful in user-space, are a bitwise

or of the following values:

• PROT_NONE, meaning that the mapped region can not be accessed;

• PROT_READ, meaning that the mapped region can be read;

• PROT_WRITE, meaning that the mapped region can be written;

• PROT_EXEC, meaning that the mapped region can be executed.

flags only MAP_SHARED is accepted, meaning that the mapped memory region is

shared.

fd file descriptor, obtained with shm_open().

off offset in the shared memory region.

Return values

0 on success;

MAP_FAILED with errno set if:

• EINVAL, len is null or addr is not a multiple of PAGE_SIZE;

• EBADF, fd is not a shared memory object descriptor (obtained with

shm_open());

• EPERM, the caller context is invalid;

• ENOTSUP, flags is not MAP_SHARED;

• EACCES, fd is not opened for reading or is not opend for writing and PRO-

T_WRITE is set in prot;

• EINTR, this service was interrupted by a signal;

• ENXIO, the range [off;off+len) is invalid for the shared memory region spec-

ified by fd;

• EAGAIN, insufficient memory exists in the system heap to create the map-

ping, increase CONFIG_XENO_OPT_SYS_HEAPSZ.

Generated on Sun Oct 13 2013 19:13:26 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/ftruncate.html

3.10 Shared memory services. 65

Valid contexts:

• kernel module initialization or cleanup routine;

• user-space thread (Xenomai threads switch to secondary mode).

See Also

Specification.

3.10.2.4 int munmap (void ∗ addr, size t len)

Unmap pages of memory.

This service unmaps the shared memory region [addr;addr+len) from the caller address-space.

When called from kernel-space the memory region remain accessible as long as it exists, and this
service only decrements a reference counter.

When called from user-space, if the region is not a shared memory region, this service falls back to the

regular Linux munmap() service.

Parameters

addr start address of shared memory area;

len length of the shared memory area.

Return values

0 on success;

-1 with errno set if:

• EINVAL, len is null, addr is not a multiple of the page size or the range

[addr;addr+len) is not a mapped region;

• ENXIO, addr is not the address of a shared memory area;

• EPERM, the caller context is invalid;

• EINTR, this service was interrupted by a signal.

Valid contexts:

• kernel module initialization or cleanup routine;

• kernel-space cancellation cleanup routine;

• user-space thread (Xenomai threads switch to secondary mode);

• user-space cancellation cleanup routine.

See Also

Specification.

3.10.2.5 int shm open (const char ∗ name, int oflags, mode t mode)

Open a shared memory object.

This service establishes a connection between a shared memory object and a file descriptor. Further

use of this descriptor will allow to dimension and map the shared memory into the calling context address
space.

One of the following access mode should be set in oflags:

Generated on Sun Oct 13 2013 19:13:26 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/mmap.html
http://www.opengroup.org/onlinepubs/000095399/functions/munmap.html

66 Module Documentation

• O_RDONLY, meaning that the shared memory object may only be mapped with the PROT_READ
flag;

• O_WRONLY, meaning that the shared memory object may only be mapped with the PROT_WRI-

TE flag;

• O_RDWR, meaning that the shared memory object may be mapped with the PROT_READ | PR-

OT_WRITE flag.

If no shared memory object named name exists, and oflags has the O_CREAT bit set, the shared
memory object is created by this function.

If oflags has the two bits O_CREAT and O_EXCL set and the shared memory object alread exists, this

service fails.

If oflags has the bit O_TRUNC set, the shared memory exists and is not currently mapped, its size is
truncated to 0.

If oflags has the bit O_DIRECT set, the shared memory will be suitable for direct memory access (allo-

cated in physically contiguous memory).

name may be any arbitrary string, in which slashes have no particular meaning. However, for portability,
using a name which starts with a slash and contains no other slash is recommended.

Parameters

name name of the shared memory object to open;

oflags flags.

mode ignored.

Returns

a file descriptor on success;

-1 with errno set if:

• ENAMETOOLONG, the length of the name argument exceeds 64 characters;

• EEXIST, the bits O_CREAT and O_EXCL were set in oflags and the shared memory object

already exists;

• ENOENT, the bit O_CREAT is not set in oflags and the shared memory object does not exist;

• ENOSPC, insufficient memory exists in the system heap to create the shared memory object,
increase CONFIG_XENO_OPT_SYS_HEAPSZ;

• EPERM, the caller context is invalid;

• EINVAL, the O_TRUNC flag was specified and the shared memory object is currently mapped;

• EMFILE, too many descriptors are currently open.

Valid contexts:

• kernel module initialization or cleanup routine;

• user-space thread (Xenomai threads switch to secondary mode).

See Also

Specification.

References close(), and ftruncate().

3.10.2.6 int shm unlink (const char ∗ name)

Unlink a shared memory object.

Generated on Sun Oct 13 2013 19:13:26 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/shm_open.html

3.10 Shared memory services. 67

This service unlinks the shared memory object named name. The shared memory object is not de-
stroyed until every file descriptor obtained with the shm_open() service is closed with the close() service

and all mappings done with mmap() are unmapped with munmap(). However, after a call to this service,
the unlinked shared memory object may no longer be reached with the shm_open() service.

Parameters

name name of the shared memory obect to be unlinked.

Return values

0 on success;

-1 with errno set if:

• EPERM, the caller context is invalid;

• ENAMETOOLONG, the length of the name argument exceeds 64 charac-

ters;

• ENOENT, the shared memory object does not exist.

Valid contexts:

• kernel module initialization or cleanup routine;

• kernel-space cancellation cleanup routine;

• user-space thread (Xenomai threads switch to secondary mode);

• user-space cancellation cleanup routine.

See Also

Specification.

Generated on Sun Oct 13 2013 19:13:26 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/shm_unlink.html

68 Module Documentation

3.11 Signals services.

Signals management services.

Collaboration diagram for Signals services.:

POSIX skin. Signals services.

Functions

• int sigemptyset (sigset_t ∗set)

Initialize and empty a signal set.

• int sigfillset (sigset_t ∗set)

Initialize and fill a signal set.

• int sigaddset (sigset_t ∗set, int sig)

Add a signal to a signal set.

• int sigdelset (sigset_t ∗set, int sig)

Delete a signal from a signal set.

• int sigismember (const sigset_t ∗set, int sig)

Test for a signal in a signal set.

• int sigaction (int sig, const struct sigaction ∗act, struct sigaction ∗oact)

Examine and change a signal action.

• int pthread_kill (pthread_t thread, int sig)

Send a signal to a thread.

• int pthread_sigqueue_np (pthread_t thread, int sig, union sigval value)

Queue a signal to a thread.

• int sigpending (sigset_t ∗set)

Examine pending signals.

• int pthread_sigmask (int how, const sigset_t ∗set, sigset_t ∗oset)

Examine and change the set of signals blocked by a thread.

• int sigwait (const sigset_t ∗set, int ∗sig)

Wait for signals.

• int sigwaitinfo (const sigset_t ∗__restrict__ set, siginfo_t ∗__restrict__ info)

Wait for signals.

• int sigtimedwait (const sigset_t ∗__restrict__ set, siginfo_t ∗__restrict__ info, const struct timespec
∗__restrict__ timeout)

Wait during a bounded time for signals.

3.11.1 Detailed Description

Signals management services. Signals are asynchronous notifications delivered to a process or thread.

Such notifications occur as the result of an exceptional event or at the request of another process.

The services documented here are reserved to Xenomai kernel-space threads, user-space threads
switch to secondary mode when handling signals, and use Linux regular signals services.

Xenomai POSIX skin signals are implemented as real-time signals, meaning that they are queued when

posted several times to a thread before the first notification is handled, and that each signal carry addi-

tional data in a siginfo_t object. In order to ensure consistence with user-space signals, valid signals
number range from 1 to SIGRTMAX, signals from SIGRTMIN to SIGRTMAX being higher priority than

Generated on Sun Oct 13 2013 19:13:26 for Xenomai POSIX skin API by Doxygen

$group__posix.html

3.11 Signals services. 69

signals from 1 to SIGRTMIN-1. As a special case, signal 0 may be used with services pthread_kill() and
pthread_sigqueue_np() to check if a thread exists, but entails no other action.

The action to be taken upon reception of a signal depends on the thread signal mask, (see

pthread_sigmask()), and on the settings described by a sigaction structure (see sigaction()).

3.11.2 Function Documentation

3.11.2.1 int pthread kill (pthread t thread, int sig)

Send a signal to a thread.

This service send the signal sig to the Xenomai POSIX skin thread thread (created with

pthread_create()). If sig is zero, this service check for existence of the thread thread, but no signal
is sent.

Parameters

thread thread identifier;

sig signal number.

Returns

0 on success;

an error number if:

• EINVAL, sig is an invalid signal number;

• EAGAIN, the maximum number of pending signals has been exceeded;

• ESRCH, thread is an invalid thread identifier.

See Also

Specification.

3.11.2.2 int pthread sigmask (int how, const sigset t ∗ set, sigset t ∗ oset)

Examine and change the set of signals blocked by a thread.

The signal mask of a thread is the set of signals that are blocked by this thread.

If oset is not NULL, this service stores, at the address oset the current signal mask of the calling thread.

If set is not NULL, this service sets the signal mask of the calling thread according to the value of how,

as follow:

• if how is SIG_BLOCK, the signals in set are added to the calling thread signal mask;

• if how is SIG_SETMASK, the calling thread signal mask is set to set;

• if how is SIG_UNBLOCK, the signals in set are removed from the calling thread signal mask.

If some signals are unblocked by this service, they are handled before this service returns.

Parameters

how if set is not null, a value indicating how to interpret set;

set if not null, a signal set that will be used to modify the calling thread signal mask;

oset if not null, address where the previous value of the calling thread signal mask will be

stored on success.

Generated on Sun Oct 13 2013 19:13:26 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/pthread_kill.html

70 Module Documentation

Returns

0 on success;

an error number if:

• EPERM, the calling context is invalid;

• EINVAL, how is not SIG_BLOCK, SIG_UNBLOCK or SIG_SETMASK.

Valid contexts:

• Xenomai POSIX skin kernel-space thread.

See Also

Specification.

3.11.2.3 int pthread sigqueue np (pthread t thread, int sig, union sigval value)

Queue a signal to a thread.

This service send the signal sig to the Xenomai POSIX skin thread thread (created with

pthread_create()), with the value value. If sig is zero, this service check for existence of the thread
thread, but no signal is sent.

This service is equivalent to the POSIX service sigqueue(), except that the signal is directed to a thread

instead of being directed to a process.

Parameters

thread thread identifier,

sig signal number,

value additional datum passed to thread with the signal sig.

Returns

0 on success;

an error number if:

• EINVAL, sig is an invalid signal number;

• EAGAIN, the maximum number of pending signals has been exceeded;

• ESRCH, thread is an invalid thread identifier.

See Also

sigqueue() specification.

3.11.2.4 int sigaction (int sig, const struct sigaction ∗ act, struct sigaction ∗ oact)

Examine and change a signal action.

The sigaction structure descibes the actions to be taken upon signal delivery. A sigaction structure is
associated with every signal, for the kernel-space as a whole.

If oact is not NULL, this service returns at the address oact, the current value of the sigaction structure

associated with the signal sig.

If act is not NULL, this service set to the value pointed to by act, the sigaction structure associated with
the signal sig.

The structure sigaction has the following members:

Generated on Sun Oct 13 2013 19:13:26 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/pthread_sigmask.html
http://www.opengroup.org/onlinepubs/000095399/functions/sigqueue.html

3.11 Signals services. 71

• sa_flags, is a bitwise OR of the flags;

– SA_RESETHAND, meaning that the signal handler will be reset to SIG_GFL and SA_SIGIN-
FO cleared upon reception of a signal,

– SA_NODEFER, meaning that the signal handler will be called with the signal sig not masked

when handling the signal sig,

– SA_SIGINFO, meaning that the member sa_sigaction of the sigaction structure will be used
as a signal handler instead of sa_handler

• sa_mask, of type sigset_t, is the value to which the thread signals mask will be set during exe-

cution of the signal handler (sig is automatically added to this set if SA_NODEFER is not set in
sa_flags);

• sa_handler, of type void (∗)(int) is the signal handler which will be called upon signal delivery if
SA_SIGINFO is not set in sa_flags, or one of SIG_IGN or SIG_DFL, meaning that the signal will

be respectively ignored or handled with the default handler;

• sa_sigaction, of type void (∗)(int, siginfo_t ∗, void ∗) is the signal handler which will be called upon
signal delivery if SA_SIGINFO is set in sa_flags.

When using sa_handler as a signal handler, it is passed the number of the received signal, when using
sa_sigaction, two additional arguments are passed:

• a pointer to a siginfo_t object, containing additional information about the received signal;

• a void pointer, always null in this implementation.

The following members of the siginfo_t structure are filled by this implementation:

• si_signo, the signal number;

• si_code, the provenance of the signal, one of:

– SI_QUEUE, the signal was queued with pthread_sigqueue_np(),

– SI_USER, the signal was queued with pthread_kill(),

– SI_TIMER, the signal was queued by a timer (see timer_settime()),

– SI_MESQ, the signal was queued by a message queue (see mq_notify());

• si_value, an additional datum, of type union sigval.

Parameters

sig a signal number;

act if not null, description of the action to be taken upon notification of the signal sig;

oact if not null, address where the previous description of the signal action is stored on
success.

Return values

0 on sucess;

-1 with errno set if:

• EINVAL, sig is an invalid signal number;

• ENOTSUP, the sa_flags member of act contains other flags than SA_RES-

ETHAND, SA_NODEFER and SA_SIGINFO;

Generated on Sun Oct 13 2013 19:13:26 for Xenomai POSIX skin API by Doxygen

72 Module Documentation

See Also

Specification.

3.11.2.5 int sigaddset (sigset t ∗ set, int sig)

Add a signal to a signal set.

This service adds the signal number sig to the signal set pointed to by set.

Parameters

set address of a signal set;

sig signal to be added to set.

Return values

0 on success;

-1 with errno set if:

• EINVAL, sig is not a valid signal number.

See Also

Specification.

3.11.2.6 int sigdelset (sigset t ∗ set, int sig)

Delete a signal from a signal set.

This service remove the signal number sig from the signal set pointed to by set.

Parameters

set address of a signal set;

sig signal to be removed from set.

Return values

0 on success;

-1 with errno set if:

• EINVAL, sig is not a valid signal number.

See Also

Specification.

3.11.2.7 int sigemptyset (sigset t ∗ set)

Initialize and empty a signal set.

This service initializes ane empties the signal set pointed to by set.

Generated on Sun Oct 13 2013 19:13:26 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/sigaction.html
http://www.opengroup.org/onlinepubs/000095399/functions/sigaddset.html
http://www.opengroup.org/onlinepubs/000095399/functions/sigdelset.html

3.11 Signals services. 73

Parameters

set address of a the signal set to be initialized.

Return values

0

See Also

Specification.

3.11.2.8 int sigfillset (sigset t ∗ set)

Initialize and fill a signal set.

This service initializes ane fills the signal set pointed to by set.

Parameters

set address of a the signal set to be filled.

Return values

0

See Also

Specification.

3.11.2.9 int sigismember (const sigset t ∗ set, int sig)

Test for a signal in a signal set.

This service tests whether the signal number sig is member of the signal set pointed to by set.

Parameters

set address of a signal set;

sig tested signal number.

Return values

0 on success;

-1 with errno set if:

• EINVAL, sig is not a valid signal number.

See Also

Specification.

3.11.2.10 int sigpending (sigset t ∗ set)

Examine pending signals.

Generated on Sun Oct 13 2013 19:13:26 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/sigemptyset.html
http://www.opengroup.org/onlinepubs/000095399/functions/sigfillset.html
http://www.opengroup.org/onlinepubs/000095399/functions/sigismember.html

74 Module Documentation

This service stores, at the address set, the set of signals that are currently blocked and have been
received by the calling thread.

Parameters

set address where the set of blocked and received signals are stored on success.

Return values

0 on success;

-1 with errno set if:

• EPERM, the calling context is invalid.

Valid contexts:

• Xenomai POSIX skin kernel-space thread.

See Also

Specification.

3.11.2.11 int sigtimedwait (const sigset t ∗ restrict set, siginfo t ∗ restrict info, const struct timespec ∗ restrict

timeout)

Wait during a bounded time for signals.

This service is equivalent to the sigwaitinfo() service, except that the calling thread is only blocked until

the timeout specified by timeout expires.

Parameters

set set of signals to wait for;

info address where the received siginfo_t object will be stored on success;

timeout the timeout, expressed as a time interval.

Return values

0 on success;

-1 with errno set if:

• EINVAL, the specified timeout is invalid;

• EPERM, the caller context is invalid;

• EINVAL, a signal in set is not currently blocked;

• EAGAIN, no signal was received and the specified timeout expired.

Valid contexts:

• Xenomai POSIX skin kernel-space thread.

See Also

Specification.

Generated on Sun Oct 13 2013 19:13:26 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/sigpending.html
http://www.opengroup.org/onlinepubs/000095399/functions/sigtimedwait.html

3.11 Signals services. 75

3.11.2.12 int sigwait (const sigset t ∗ set, int ∗ sig)

Wait for signals.

This service blocks a Xenomai kernel-space POSIX skin thread until a signal of the set set is received.

If a signal in set is not currently blocked by the calling thread, this service returns immediately with an

error. The signal received is stored at the address sig.

If a signal of the set set was already pending, it is cleared and this service returns immediately.

Signals are received in priority order, i.e. from SIGRTMIN to SIGRTMAX, then from 1 to SIGRTMIN-1.

Parameters

set set of signals to wait for;

sig address where the received signal will be stored on success.

Returns

0 on success;
an error number if:

• EPERM, the caller context is invalid;

• EINVAL, a signal in set is not currently blocked.

Valid contexts:

• Xenomai POSIX skin kernel-space thread.

See Also

Specification.

3.11.2.13 int sigwaitinfo (const sigset t ∗ restrict set, siginfo t ∗ restrict info)

Wait for signals.

This service is equivalent to the sigwait() service, except that it returns, at the address info, the siginfo_t
object associated with the received signal instead of only returning the signal number.

Parameters

set set of signals to wait for;

info address where the received siginfo_t object will be stored on success.

Return values

0 on success;

-1 with errno set if:

• EPERM, the caller context is invalid;

• EINVAL, a signal in set is not currently blocked.

Valid contexts:

• Xenomai POSIX skin kernel-space thread.

Generated on Sun Oct 13 2013 19:13:26 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/sigwait.html

76 Module Documentation

See Also

Specification.

Generated on Sun Oct 13 2013 19:13:26 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/sigwaitinfo.html

3.12 Threads management services. 77

3.12 Threads management services.

Threads management services.

Collaboration diagram for Threads management services.:

Threads management
 services.

Thread cancellation.

Threads scheduling
 services.

Thread creation attributes.

POSIX skin.

Modules

• Thread cancellation.

Thread cancellation.

• Threads scheduling services.

Thread scheduling services.

• Thread creation attributes.

Thread creation attributes.

Functions

• int pthread_once (pthread_once_t ∗once, void(∗init_routine)(void))

Execute an initialization routine.

• int pthread_create (pthread_t ∗tid, const pthread_attr_t ∗attr, void ∗(∗start)(void ∗), void ∗arg)

Create a thread.

• int pthread_detach (pthread_t thread)

Detach a running thread.

• int pthread_equal (pthread_t t1, pthread_t t2)

Compare thread identifiers.

• void pthread_exit (void ∗value_ptr)

Terminate the current thread.

• int pthread_join (pthread_t thread, void ∗∗value_ptr)

Wait for termination of a specified thread.

• pthread_t pthread_self (void)

Get the identifier of the calling thread.

• int pthread_make_periodic_np (pthread_t thread, struct timespec ∗starttp, struct timespec

∗periodtp)

Make a thread periodic.

• int pthread_wait_np (unsigned long ∗overruns_r)

Wait for current thread next period.

• int pthread_set_mode_np (int clrmask, int setmask)

Set the mode of the current thread.

• int pthread_set_name_np (pthread_t thread, const char ∗name)

Set a thread name.

Generated on Sun Oct 13 2013 19:13:26 for Xenomai POSIX skin API by Doxygen

$group__posix__cancel.html
$group__posix__sched.html
$group__posix__threadattr.html
$group__posix.html

78 Module Documentation

3.12.1 Detailed Description

Threads management services.

See Also

Specification.

3.12.2 Function Documentation

3.12.2.1 int pthread create (pthread t ∗ tid, const pthread attr t ∗ attr, void ∗(∗)(void ∗) start, void ∗ arg)

Create a thread.

This service create a thread. The created thread may be used with all POSIX skin services.

The new thread run the start routine, with the arg argument.

The new thread signal mask is inherited from the current thread, if it was also created with

pthread_create(), otherwise the new thread signal mask is empty.

Other attributes of the new thread depend on the attr argument. If attr is null, default values for these

attributes are used. See Thread creation attributes. for a definition of thread creation attributes and their

default values.

Returning from the start routine has the same effect as calling pthread_exit() with the return value.

Parameters

tid address where the identifier of the new thread will be stored on success;

attr thread attributes;

start thread routine;

arg thread routine argument.

Returns

0 on success;
an error number if:

• EINVAL, attr is invalid;

• EAGAIN, insufficient memory exists in the system heap to create a new thread, increase CO-

NFIG_XENO_OPT_SYS_HEAPSZ;

• EINVAL, thread attribute inheritsched is set to PTHREAD_INHERIT_SCHED and the calling
thread does not belong to the POSIX skin;

See Also

Specification.

Note

When creating or shadowing a Xenomai thread for the first time in user-space, Xenomai installs a handler
for the SIGWINCH signal. If you had installed a handler before that, it will be automatically called by

Xenomai for SIGWINCH signals that it has not sent.

If, however, you install a signal handler for SIGWINCH after creating or shadowing the first Xenomai

thread, you have to explicitly call the function xeno_sigwinch_handler at the beginning of your signal
handler, using its return to know if the signal was in fact an internal signal of Xenomai (in which case

Generated on Sun Oct 13 2013 19:13:26 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/xsh_chap02_09.html#tag_02_09
http://www.opengroup.org/onlinepubs/000095399/functions/pthread_create.html

3.12 Threads management services. 79

it returns 1), or if you should handle the signal (in which case it returns 0). xeno_sigwinch_handler
prototype is:

int xeno_sigwinch_handler(int sig, siginfo_t ∗si, void ∗ctxt);

Which means that you should register your handler with sigaction, using the SA_SIGINFO flag, and pass

all the arguments you received to xeno_sigwinch_handler.

References pthread_getschedparam_ex().

3.12.2.2 int pthread detach (pthread t thread)

Detach a running thread.

This service detaches a joinable thread. A detached thread is a thread which control block is automat-

ically reclaimed when it terminates. The control block of a joinable thread, on the other hand, is only

reclaimed when joined with the service pthread_join().

If some threads are currently blocked in the pthread_join() service with thread as a target, they are

unblocked and pthread_join() returns EINVAL.

Parameters

thread target thread.

Returns

0 on success;

an error number if:

• ESRCH, thread is an invalid thread identifier;

• EINVAL, thread is not joinable.

See Also

Specification.

3.12.2.3 int pthread equal (pthread t t1, pthread t t2)

Compare thread identifiers.

This service compare the thread identifiers t1 and t2. No attempt is made to check the threads for

existence. In order to check if a thread exists, the pthread_kill() service should be used with the signal

number 0.

Parameters

t1 thread identifier;

t2 other thread identifier.

Returns

a non zero value if the thread identifiers are equal;

0 otherwise.

See Also

Specification.

Generated on Sun Oct 13 2013 19:13:26 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/pthread_detach.html
http://www.opengroup.org/onlinepubs/000095399/functions/pthread_equal.html

80 Module Documentation

3.12.2.4 void pthread exit (void ∗ value ptr)

Terminate the current thread.

This service terminate the current thread with the return value value_ptr. If the current thread is joinable,

the return value is returned to any thread joining the current thread with the pthread_join() service.

When a thread terminates, cancellation cleanup handlers are executed in the reverse order that they

were pushed. Then, thread-specific data destructors are executed.

Parameters

value_ptr thread return value.

See Also

Specification.

3.12.2.5 int pthread join (pthread t thread, void ∗∗ value ptr)

Wait for termination of a specified thread.

If the thread thread is running and joinable, this service blocks the calling thread until the thread thread
terminates or detaches. In this case, the calling context must be a blockable context (i.e. a Xenomai
thread without the scheduler locked) or the root thread (i.e. a module initilization or cleanup routine).

When thread terminates, the calling thread is unblocked and its return value is stored at∗ the address

value_ptr.

If, on the other hand, the thread thread has already finished execution, its return value is stored at the

address value_ptr and this service returns immediately. In this case, this service may be called from any

context.

This service is a cancelation point for POSIX skin threads: if the calling thread is canceled while blocked
in a call to this service, the cancelation request is honored and thread remains joinable.

Multiple simultaneous calls to pthread_join() specifying the same running target thread block all the

callers until the target thread terminates.

Parameters

thread identifier of the thread to wait for;

value_ptr address where the target thread return value will be stored on success.

Returns

0 on success;

an error number if:

• ESRCH, thread is invalid;

• EDEADLK, attempting to join the calling thread;

• EINVAL, thread is detached;

• EPERM, the caller context is invalid.

Valid contexts, if this service has to block its caller:

• Xenomai kernel-space thread;

• kernel module initilization or cleanup routine;

• Xenomai user-space thread (switches to primary mode).

Generated on Sun Oct 13 2013 19:13:26 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/pthread_exit.html

3.12 Threads management services. 81

See Also

Specification.

3.12.2.6 int pthread make periodic np (pthread t thread, struct timespec ∗ starttp, struct timespec ∗ periodtp)

Make a thread periodic.

This service make the POSIX skin thread thread periodic.

This service is a non-portable extension of the POSIX interface.

Parameters

thread thread identifier. This thread is immediately delayed until the first periodic release

point is reached.

starttp start time, expressed as an absolute value of the CLOCK_REALTIME clock. The
affected thread will be delayed until this point is reached.

periodtp period, expressed as a time interval.

Returns

0 on success;
an error number if:

• ESRCH, thread is invalid;

• ETIMEDOUT, the start time has already passed.

Rescheduling: always, until the starttp start time has been reached.

3.12.2.7 int pthread once (pthread once t ∗ once, void(∗)(void) init routine)

Execute an initialization routine.

This service may be used by libraries which need an initialization function to be called only once.

The function init_routine will only be called, with no argument, the first time this service is called speci-

fying the address once.

Returns

0 on success;

an error number if:

• EINVAL, the object pointed to by once is invalid (it must have been initialized with PTHREAD-
_ONCE_INIT).

See Also

Specification.

3.12.2.8 pthread t pthread self (void)

Get the identifier of the calling thread.

This service returns the identifier of the calling thread.

Generated on Sun Oct 13 2013 19:13:26 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/pthread_join.html
http://www.opengroup.org/onlinepubs/000095399/functions/pthread_once.html

82 Module Documentation

Returns

identifier of the calling thread;

NULL if the calling thread is not a POSIX skin thread.

See Also

Specification.

3.12.2.9 int pthread set mode np (int clrmask, int setmask)

Set the mode of the current thread.

This service sets the mode of the calling thread. clrmask and setmask are two bit masks which are

respectively cleared and set in the calling thread status. They are a bitwise OR of the following values:

• PTHREAD_LOCK_SCHED, when set, locks the scheduler, which prevents the current thread from
being switched out by the scheduler until the scheduler is unlocked;

• PTHREAD_RPIOFF, when set, prevents the root Linux thread from inheriting the priority of the

calling thread, when this thread is running in secondary mode;

• PTHREAD_WARNSW, when set, cause the signal SIGXCPU to be sent to the current thread,

whenever it involontary switches to secondary mode;

• PTHREAD_PRIMARY, cause the migration of the current thread to primary mode.

PTHREAD_LOCK_SCHED is valid for any Xenomai thread, the other bits are only valid for Xenomai

user-space threads.

This service is a non-portable extension of the POSIX interface.

Parameters

clrmask set of bits to be cleared;

setmask set of bits to be set.

Returns

0 on success;
an error number if:

• EINVAL, some bit in clrmask or setmask is invalid.

3.12.2.10 int pthread set name np (pthread t thread, const char ∗ name)

Set a thread name.

This service set to name, the name of thread. This name is used for displaying information in /proc/xeno-

mai/sched.

This service is a non-portable extension of the POSIX interface.

Parameters

thread target thread;

name name of the thread.

Generated on Sun Oct 13 2013 19:13:26 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/pthread_self.html

3.12 Threads management services. 83

Returns

0 on success;

an error number if:

• ESRCH, thread is invalid.

3.12.2.11 int pthread wait np (unsigned long ∗ overruns r)

Wait for current thread next period.

If it is periodic, this service blocks the calling thread until the next period elapses.

This service is a cancelation point for POSIX skin threads.

This service is a non-portable extension of the POSIX interface.

Parameters

overruns_r address where the overruns count is returned in case of overrun.

Returns

0 on success;

an error number if:

• EPERM, the calling context is invalid;

• EWOULDBLOCK, the calling thread is not periodic;

• EINTR, this service was interrupted by a signal;

• ETIMEDOUT, at least one overrun occurred.

Valid contexts:

• Xenomai kernel-space thread;

• Xenomai user-space thread (switches to primary mode).

Generated on Sun Oct 13 2013 19:13:26 for Xenomai POSIX skin API by Doxygen

84 Module Documentation

3.13 Thread creation attributes.

Thread creation attributes.

Collaboration diagram for Thread creation attributes.:

Threads management
 services.

Thread creation attributes.

Functions

• int pthread_attr_init (pthread_attr_t ∗attr)

Initialize a thread attributes object.

• int pthread_attr_destroy (pthread_attr_t ∗attr)

Destroy a thread attributes object.

• int pthread_attr_getdetachstate (const pthread_attr_t ∗attr, int ∗detachstate)

Get detachstate attribute.

• int pthread_attr_setdetachstate (pthread_attr_t ∗attr, int detachstate)

Set detachstate attribute.

• int pthread_attr_getstacksize (const pthread_attr_t ∗attr, size_t ∗stacksize)

Get stacksize attribute.

• int pthread_attr_setstacksize (pthread_attr_t ∗attr, size_t stacksize)

Set stacksize attribute.

• int pthread_attr_getinheritsched (const pthread_attr_t ∗attr, int ∗inheritsched)

Get inheritsched attribute.

• int pthread_attr_setinheritsched (pthread_attr_t ∗attr, int inheritsched)

Set inheritsched attribute.

• int pthread_attr_getschedpolicy (const pthread_attr_t ∗attr, int ∗policy)

Get schedpolicy attribute.

• int pthread_attr_setschedpolicy (pthread_attr_t ∗attr, int policy)

Set schedpolicy attribute.

• int pthread_attr_getschedparam (const pthread_attr_t ∗attr, struct sched_param ∗par)

Get schedparam attribute.

• int pthread_attr_getschedparam_ex (const pthread_attr_t ∗attr, struct sched_param_ex ∗par)

Get schedparam_ex extended attribute.

• int pthread_attr_setschedparam (pthread_attr_t ∗attr, const struct sched_param ∗par)

Set schedparam attribute.

• int pthread_attr_setschedparam_ex (pthread_attr_t ∗attr, const struct sched_param_ex ∗par)

Set extended schedparam_ex attribute.

• int pthread_attr_getscope (const pthread_attr_t ∗attr, int ∗scope)

Get contention scope attribute.

• int pthread_attr_setscope (pthread_attr_t ∗attr, int scope)

Set contention scope attribute.

• int pthread_attr_getname_np (const pthread_attr_t ∗attr, const char ∗∗name)

Get name attribute.

• int pthread_attr_setname_np (pthread_attr_t ∗attr, const char ∗name)

Set name attribute.

• int pthread_attr_getfp_np (const pthread_attr_t ∗attr, int ∗fp)

Get the floating point attribute.

Generated on Sun Oct 13 2013 19:13:26 for Xenomai POSIX skin API by Doxygen

$group__posix__thread.html

3.13 Thread creation attributes. 85

• int pthread_attr_setfp_np (pthread_attr_t ∗attr, int fp)

Set the floating point attribute.

• int pthread_attr_getaffinity_np (const pthread_attr_t ∗attr, xnarch_cpumask_t ∗mask)

Get the processor affinity attribute.

• int pthread_attr_setaffinity_np (pthread_attr_t ∗attr, xnarch_cpumask_t mask)

Set the processor affinity attribute.

3.13.1 Detailed Description

Thread creation attributes. The services described in this section allow to set the attributes of a pthread-

_attr_t object, passed to the pthread_create() service in order to set the attributes of a created thread.

A pthread_attr_t object has to be initialized with pthread_attr_init() first, which sets attributes to their
default values, i.e. in kernel-space:

• detachstate to PTHREAD_CREATE_JOINABLE,

• stacksize to PTHREAD_STACK_MIN,

• inheritsched to PTHREAD_EXPLICIT_SCHED,

• schedpolicy to SCHED_OTHER,

• name to NULL (only available in kernel-space),

• scheduling priority to the minimum,

• floating-point hardware enabled (only available in kernel-space),

• processor affinity set to all available processors (only available as a thread attribute in kernel-
space).

In user-space, the attributes and their defaults values are those documented by the underlying threading

library (LinuxThreads or NPTL).

3.13.2 Function Documentation

3.13.2.1 int pthread attr destroy (pthread attr t ∗ attr)

Destroy a thread attributes object.

This service invalidates the attribute object pointed to by attr. The object becomes invalid for all services

(they all return EINVAL) except pthread_attr_init().

See Also

Specification.

3.13.2.2 int pthread attr getaffinity np (const pthread attr t ∗ attr, xnarch cpumask t ∗ mask)

Get the processor affinity attribute.

This service stores, at the address mask, the value of the affinity attribute in the attribute object attr.

The affinity attributes is a bitmask where bits set indicate processor where a thread created with the
attribute attr may run. The least significant bit corresponds to the first logical processor.

This service is a non-portable extension of the POSIX interface.

Generated on Sun Oct 13 2013 19:13:26 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/pthread_attr_destroy.html

86 Module Documentation

Parameters

attr attribute object;

mask address where the value of the affinity attribute will be stored on success.

Returns

0 on success;
an error number if:

• EINVAL, attr is invalid.

Valid contexts:

• kernel module initialization or cleanup routine;

• Xenomai kernel-space thread.

3.13.2.3 int pthread attr getdetachstate (const pthread attr t ∗ attr, int ∗ detachstate)

Get detachstate attribute.

This service returns, at the address detachstate, the value of the detachstate attribute in the thread
attribute object attr.

Valid values of this attribute are PTHREAD_CREATE_JOINABLE and PTHREAD_CREATE_DETAC-

HED. A detached thread is a thread which control block is automatically reclaimed when it terminates.
The control block of a joinable thread, on the other hand, is only reclaimed when joined with the service

pthread_join().

A thread that was created joinable may be detached after creation by using the pthread_detach() service.

Parameters

attr attribute object

detachstate address where the value of the detachstate attribute will be stored on success.

Returns

0 on success;

an error number if:

• EINVAL, attr is invalid;

See Also

Specification.

3.13.2.4 int pthread attr getfp np (const pthread attr t ∗ attr, int ∗ fp)

Get the floating point attribute.

This service returns, at the address fp, the value of the fp attribute in the attribute object attr.

The fp attribute is a boolean attribute indicating whether a thread created with the attribute attr may use

floating-point hardware.

This service is a non-portable extension of the POSIX interface.

Parameters

attr attribute object;

fp address where the value of the fp attribute will be stored on success.
Generated on Sun Oct 13 2013 19:13:26 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/pthread_attr_getdetachstate.html

3.13 Thread creation attributes. 87

Returns

0 on success;

an error number if:

• EINVAL, attr is invalid.

Valid contexts:

• kernel module initialization or cleanup routine;

• Xenomai kernel-space thread.

3.13.2.5 int pthread attr getinheritsched (const pthread attr t ∗ attr, int ∗ inheritsched)

Get inheritsched attribute.

This service returns at the address inheritsched the value of the inheritsched attribute in the attribute

object attr.

Threads created with this attribute set to PTHREAD_INHERIT_SCHED will use the same scheduling

policy and priority as the thread calling pthread_create(). Threads created with this attribute set to PT-

HREAD_EXPLICIT_SCHED will use the value of the schedpolicy attribute as scheduling policy, and the
value of the schedparam attribute as scheduling priority.

Parameters

attr attribute object;

inheritsched address where the value of the inheritsched attribute will be stored on success.

Returns

0 on success;
an error number if:

• EINVAL, attr is invalid.

See Also

Specification.

3.13.2.6 int pthread attr getname np (const pthread attr t ∗ attr, const char ∗∗ name)

Get name attribute.

This service stores, at the address name, the value of the name attribute in the attribute object attr.

The name attribute is the name under which a thread created with the attribute object attr will appear
under /proc/xenomai/sched.

The name returned by this function is only valid until the name is changed with pthread_attr_setname_np()

or the attr object is destroyed with pthread_attr_destroy().

If name is NULL, a unique default name will be used.

This service is a non-portable extension of the POSIX interface.

Parameters

attr attribute object;

name address where the value of the name attribute will be stored on success.

Generated on Sun Oct 13 2013 19:13:26 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/pthread_attr_getinheritsched.html

88 Module Documentation

Returns

0 on success;

an error number if:

• EINVAL, attr is invalid.

Valid contexts:

• kernel module initialization or cleanup routine;

• Xenomai kernel-space thread.

3.13.2.7 int pthread attr getschedparam (const pthread attr t ∗ attr, struct sched param ∗ par)

Get schedparam attribute.

This service stores, at the address par, the limited form of the schedparam attribute in the attribute object

attr.

The limited form only defines the sched_priority member, that is sufficent to hold the scheduling param-

eter for SCHED_FIFO, SCHED_RR and SCHED_OTHER class members. Threads created with attr will

use the value of this attribute as a scheduling priority if the attribute inheritsched is set to PTHREAD_E-
XPLICIT_SCHED. Valid priorities range from 1 to 99.

pthread_attr_getschedparam_ex() should be used to retrieve the parameters for extended scheduling

classes, such as SCHED_SPORADIC or SCHED_TP.

Parameters

attr attribute object;

par address where the value of the schedparam attribute will be stored on success.

Returns

0 on success;

an error number if:

• EINVAL, attr is invalid.

See Also

Specification.

3.13.2.8 int pthread attr getschedparam ex (const pthread attr t ∗ attr, struct sched param ex ∗ par)

Get schedparam_ex extended attribute.

This service is an extended version of pthread_attr_getschedparam(), that also supports Xenomai-

specific or additional POSIX scheduling policies, which are not available with the host Linux environ-

ment.

Typically, SCHED_SPORADIC or SCHED_TP parameters can be retrieved from this call.

Parameters

attr attribute object;

par address where the value of the extended schedparam_ex attribute will be stored on
success.

Generated on Sun Oct 13 2013 19:13:26 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/pthread_attr_getschedparam.html

3.13 Thread creation attributes. 89

Returns

0 on success;

an error number if:

• EINVAL, attr is invalid.

See Also

Specification.

3.13.2.9 int pthread attr getschedpolicy (const pthread attr t ∗ attr, int ∗ policy)

Get schedpolicy attribute.

This service stores, at the address policy, the value of the policy attribute in the attribute object attr.

Threads created with the attribute object attr use the value of this attribute as scheduling policy if the
inheritsched attribute is set to PTHREAD_EXPLICIT_SCHED. The value of this attribute is one of SCH-

ED_FIFO, SCHED_RR, SCHED_SPORADIC, SCHED_TP or SCHED_OTHER.

Parameters

attr attribute object;

policy address where the value of the policy attribute in the attribute object attr will be stored

on success.

Returns

0 on success;

an error number if:

• EINVAL, attr is invalid.

See Also

Specification.

3.13.2.10 int pthread attr getscope (const pthread attr t ∗ attr, int ∗ scope)

Get contention scope attribute.

This service stores, at the address scope, the value of the scope attribute in the attribute object attr.

The scope attribute represents the scheduling contention scope of threads created with the attribute
object attr. This implementation only supports the value PTHREAD_SCOPE_SYSTEM.

Parameters

attr attribute object;

scope address where the value of the scope attribute will be stored on sucess.

Returns

0 on success;

an error number if:

• EINVAL, attr is invalid.

Generated on Sun Oct 13 2013 19:13:26 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/pthread_attr_getschedparam.html
http://www.opengroup.org/onlinepubs/000095399/functions/pthread_attr_getschedpolicy.html

90 Module Documentation

See Also

Specification.

3.13.2.11 int pthread attr getstacksize (const pthread attr t ∗ attr, size t ∗ stacksize)

Get stacksize attribute.

This service stores, at the address stacksize, the value of the stacksize attribute in the attribute object
attr.

The stacksize attribute is used as the stack size of the threads created using the attribute object attr.

Parameters

attr attribute object;

stacksize address where the value of the stacksize attribute will be stored on success.

Returns

0 on success;

an error number if:

• EINVAL, attr is invalid.

See Also

Specification.

3.13.2.12 int pthread attr init (pthread attr t ∗ attr)

Initialize a thread attributes object.

This service initializes the thread creation attributes structure pointed to by attr. Attributes are set to their
default values (see Thread creation attributes.).

If this service is called specifying a thread attributes object that was already initialized, the attributes

object is reinitialized.

Parameters

attr address of the thread attributes object to initialize.

Returns

0.

See Also

Specification.

3.13.2.13 int pthread attr setaffinity np (pthread attr t ∗ attr, xnarch cpumask t mask)

Set the processor affinity attribute.

This service sets to mask, the value of the affinity attribute in the attribute object attr.

Generated on Sun Oct 13 2013 19:13:26 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/pthread_attr_getscope.html
http://www.opengroup.org/onlinepubs/000095399/functions/pthread_attr_getstacksize.html
http://www.opengroup.org/onlinepubs/000095399/functions/pthread_attr_init.html

3.13 Thread creation attributes. 91

The affinity attributes is a bitmask where bits set indicate processor where a thread created with the
attribute attr may run. The least significant bit corresponds to the first logical processor.

This service is a non-portable extension of the POSIX interface.

Parameters

attr attribute object;

mask address where the value of the affinity attribute will be stored on success.

Returns

0 on success;

an error number if:

• EINVAL, attr is invalid.

Valid contexts:

• kernel module initialization or cleanup routine;

• Xenomai kernel-space thread.

3.13.2.14 int pthread attr setdetachstate (pthread attr t ∗ attr, int detachstate)

Set detachstate attribute.

This service sets to detachstate the value of the detachstate attribute in the attribute object attr.

Valid values of this attribute are PTHREAD_CREATE_JOINABLE and PTHREAD_CREATE_DETAC-
HED. A detached thread is a thread which control block is automatically reclaimed when it terminates.

The control block of a joinable thread, on the other hand, is only reclaimed when joined with the service

pthread_join().

A thread that was created joinable may be detached after creation by using the pthread_detach() service.

Parameters

attr attribute object;

detachstate value of the detachstate attribute.

Returns

0 on success;
an error number if:

• EINVAL, the attribute object attr is invalid

See Also

Specification.

3.13.2.15 int pthread attr setfp np (pthread attr t ∗ attr, int fp)

Set the floating point attribute.

This service set to fp, the value of the fp attribute in the attribute object attr.

The fp attribute is a boolean attribute indicating whether a thread created with the attribute attr may use

floating-point hardware.

This service is a non-portable extension of the POSIX interface.

Generated on Sun Oct 13 2013 19:13:26 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/pthread_attr_setdetachstate.html

92 Module Documentation

Parameters

attr attribute object;

fp value of the fp attribute.

Returns

0 on success;
an error number if:

• EINVAL, attr is invalid.

Valid contexts:

• kernel module initialization or cleanup routine;

• Xenomai kernel-space thread.

3.13.2.16 int pthread attr setinheritsched (pthread attr t ∗ attr, int inheritsched)

Set inheritsched attribute.

This service set to inheritsched the value of the inheritsched attribute in the attribute object attr.

Threads created with this attribute set to PTHREAD_INHERIT_SCHED will use the same scheduling

policy and priority as the thread calling pthread_create(). Threads created with this attribute set to PT-

HREAD_EXPLICIT_SCHED will use the value of the schedpolicy attribute as scheduling policy, and the
value of the schedparam attribute as scheduling priority.

Parameters

attr attribute object;

inheritsched value of the inheritsched attribute, PTHREAD_INHERIT_SCHED or PTHREAD_EX-

PLICIT_SCHED.

Returns

0 on success;

an error number if:

• EINVAL, attr or inheritsched is invalid.

See Also

Specification.

3.13.2.17 int pthread attr setname np (pthread attr t ∗ attr, const char ∗ name)

Set name attribute.

This service set to name, the value of the name attribute in the attribute object attr.

The name attribute is the name under which a thread created with the attribute object attr will appear

under /proc/xenomai/sched.

If name is NULL, a unique default name will be used.

This service is a non-portable extension of the POSIX interface.

Parameters

attr attribute object;

name value of the name attribute.
Generated on Sun Oct 13 2013 19:13:26 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/pthread_attr_setinheritsched.html

3.13 Thread creation attributes. 93

Returns

0 on success;

an error number if:

• EINVAL, attr is invalid;

• ENOMEM, insufficient memory exists in the system heap to duplicate the name string, increase
CONFIG_XENO_OPT_SYS_HEAPSZ.

Valid contexts:

• kernel module initialization or cleanup routine;

• Xenomai kernel-space thread.

3.13.2.18 int pthread attr setschedparam (pthread attr t ∗ attr, const struct sched param ∗ par)

Set schedparam attribute.

This service set to par, the limited form of the schedparam attribute in the attribute object attr.

The limited form only defines the sched_priority member, that is sufficent to hold the scheduling param-

eter for SCHED_FIFO, SCHED_RR and SCHED_OTHER class members. Threads created with attr will

use the value of this attribute as a scheduling priority if the attribute inheritsched is set to PTHREAD_E-
XPLICIT_SCHED. Valid priorities range from 1 to 99.

Parameters

attr attribute object;

par value of the schedparam attribute.

Returns

0 on success;

an error number if:

• EINVAL, attr or par is invalid.

See Also

Specification.

3.13.2.19 int pthread attr setschedparam ex (pthread attr t ∗ attr, const struct sched param ex ∗ par)

Set extended schedparam_ex attribute.

This service is an extended version of pthread_attr_setschedparam(), that also supports Xenomai-
specific or additional POSIX scheduling policies, which are not available with the host Linux environ-

ment.

Typically, SCHED_SPORADIC or SCHED_TP parameters can be set using this call.

Parameters

attr attribute object;

par value of the schedparam attribute.

Generated on Sun Oct 13 2013 19:13:26 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/pthread_attr_setschedparam.html

94 Module Documentation

Returns

0 on success;

an error number if:

• EINVAL, attr or par is invalid.

See Also

Specification.

3.13.2.20 int pthread attr setschedpolicy (pthread attr t ∗ attr, int policy)

Set schedpolicy attribute.

This service set to policy the value of the policy attribute in the attribute object attr.

Threads created with the attribute object attr use the value of this attribute as scheduling policy if the
inheritsched attribute is set to PTHREAD_EXPLICIT_SCHED. The value of this attribute is one of SCH-

ED_FIFO, SCHED_RR, SCHED_SPORADIC, SCHED_TP or SCHED_OTHER.

Parameters

attr attribute object;

policy value of the policy attribute.

Returns

0 on success;

an error number if:

• EINVAL, attr or policy is invalid.

See Also

Specification.

3.13.2.21 int pthread attr setscope (pthread attr t ∗ attr, int scope)

Set contention scope attribute.

This service set to scope the value of the scope attribute in the attribute object attr.

The scope attribute represents the scheduling contention scope of threads created with the attribute
object attr. This implementation only supports the value PTHREAD_SCOPE_SYSTEM.

Parameters

attr attribute object;

scope value of the scope attribute.

Returns

0 on success;

an error number if:

• ENOTSUP, scope is an unsupported value of the scope attribute.

• EINVAL, attr is invalid.

Generated on Sun Oct 13 2013 19:13:26 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/pthread_attr_setschedparam.html
http://www.opengroup.org/onlinepubs/000095399/functions/pthread_attr_setschedpolicy.html

3.13 Thread creation attributes. 95

See Also

Specification.

3.13.2.22 int pthread attr setstacksize (pthread attr t ∗ attr, size t stacksize)

Set stacksize attribute.

This service set to stacksize, the value of the stacksize attribute in the attribute object attr.

The stacksize attribute is used as the stack size of the threads created using the attribute object attr.

The minimum value for this attribute is PTHREAD_STACK_MIN.

Parameters

attr attribute object;

stacksize value of the stacksize attribute.

Returns

0 on success;
an error number if:

• EINVAL, attr or stacksize is invalid.

See Also

Specification.

Generated on Sun Oct 13 2013 19:13:26 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/pthread_attr_setscope.html
http://www.opengroup.org/onlinepubs/000095399/functions/pthread_attr_setstacksize.html

96 Module Documentation

3.14 Thread-specific data.

Thread-specific data.

Collaboration diagram for Thread-specific data.:

POSIX skin. Thread-specific data.

Functions

• int pthread_key_create (pthread_key_t ∗key, void(∗destructor)(void ∗))

Create a thread-specific data key.

• int pthread_setspecific (pthread_key_t key, const void ∗value)

Associate a thread-specific value with the specified key.

• void ∗ pthread_getspecific (pthread_key_t key)

Get the thread-specific value bound to the specified key.

• int pthread_key_delete (pthread_key_t key)

Delete a thread-specific data key.

3.14.1 Detailed Description

Thread-specific data. Programs often need global or static variables that have different values in differ-
ent threads. Since threads share one memory space, this cannot be achieved with regular variables.

Thread-specific data is the POSIX threads answer to this need.

Each thread possesses a private memory block, the thread-specific data area, or TSD area for short.
This area is indexed by TSD keys. The TSD area associates values of type ‘void ∗’ to TSD keys. TSD

keys are common to all threads, but the value associated with a given TSD key can be different in each

thread.

When a thread is created, its TSD area initially associates NULL with all keys.

The services documented here are valid in kernel-space context; when called in user-space, the under-

lying Linux threading library (LinuxThreads or NPTL) services are used.

3.14.2 Function Documentation

3.14.2.1 void∗ pthread getspecific (pthread key t key)

Get the thread-specific value bound to the specified key.

This service returns the value associated, for the calling thread, with the key key.

Parameters

key TSD key, obtained with pthread_key_create().

Returns

the value associated with key;

NULL if the context is invalid.

Valid contexts:

• Xenomai POSIX skin kernel-space thread.

Generated on Sun Oct 13 2013 19:13:26 for Xenomai POSIX skin API by Doxygen

$group__posix.html

3.14 Thread-specific data. 97

See Also

Specification.

3.14.2.2 int pthread key create (pthread key t ∗ key, void(∗)(void ∗) destructor)

Create a thread-specific data key.

This service create a TSD key. The NULL value is associated for all threads with the new key and the new
key is returned at the address key. If destructor is not null, it is executed when a thread is terminated as

long as the datum associated with the key is not NULL, up to PTHREAD_DESTRUCTOR_ITERATIONS
times.

Parameters

key address where the new key will be stored on success;

destructor function to be invoked when a thread terminates and has a non NULL value associ-

ated with the new key.

Returns

0 on success;

an error number if:

• EAGAIN, the total number of keys PTHREAD_KEYS_MAX TSD has been exceeded;

• ENOMEM, insufficient memory exists in the system heap to create a new key, increase CON-

FIG_XENO_OPT_SYS_HEAPSZ.

See Also

Specification.

3.14.2.3 int pthread key delete (pthread key t key)

Delete a thread-specific data key.

This service deletes the TSD key key. Note that the key destructor function is not called, so, if any thread

has a value associated with key that is a pointer to dynamically allocated memory, the application has to
manage to free that memory by other means.

Parameters

key the TSD key to be destroyed.

Returns

0 on success;

an error number if:

• EINVAL, key is invalid.

See Also

Specification.

Generated on Sun Oct 13 2013 19:13:26 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/pthread_getspecific.html
http://www.opengroup.org/onlinepubs/000095399/functions/pthread_key_create.html
http://www.opengroup.org/onlinepubs/000095399/functions/pthread_key_delete.html

98 Module Documentation

3.14.2.4 int pthread setspecific (pthread key t key, const void ∗ value)

Associate a thread-specific value with the specified key.

This service associates, for the calling thread, the value value to the key key.

Parameters

key TSD key, obtained with pthread_key_create();

value value.

Returns

0 on success;
an error number if:

• EPERM, the caller context is invalid;

• EINVAL, key is invalid.

Valid contexts:

• Xenomai POSIX skin kernel-space thread.

See Also

Specification.

Generated on Sun Oct 13 2013 19:13:26 for Xenomai POSIX skin API by Doxygen

http://www.opengroup.org/onlinepubs/000095399/functions/pthread_setspecific.html

Chapter 4

File Documentation

4.1 ksrc/skins/posix/syscall.c File Reference

This file is part of the Xenomai project.

Include dependency graph for syscall.c:

ksrc/skins/posix/syscall.c

linux/err.h asm/xenomai/wrappers.h nucleus/jhash.h

nucleus/ppd.h

nucleus/sys_ppd.h posix/syscall.h

posix/posix.h

posix/thread.h

posix/registry.h

posix/mutex.h

posix/cond.h

posix/mq.h

posix/intr.h

posix/sem.h

posix/shm.h

posix/timer.h

posix/internal.h

nucleus/xenomai.hnucleus/select.h nucleus/assert.h

stdarg.h nucleus/queue.h nucleus/synch.h

asm/xenomai/atomic.h

pthread.hposix/cb_lock.h

nucleus/compiler.h nucleus/types.h

nucleus/intr.hposix/sig.h

4.1.1 Detailed Description

This file is part of the Xenomai project. Copyright (C) 2005 Philippe Gerum rpm@xenomai.orgCopyright

(C) 2005 Gilles Chanteperdrix gilles.chanteperdrix@xenomai.org

This program is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 2 of the License, or (at your

option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See

the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not, write

to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

$thread_8h_source.html
$registry_8h_source.html
$mutex_8h_source.html
$cond_8h_source.html
$mq_8h_source.html
$intr_8h_source.html
$sem_8h_source.html
$shm_8h_source.html
$timer_8h_source.html
$internal_8h_source.html
$cb__lock_8h_source.html
$sig_8h_source.html
mailto:rpm@xenomai.org
mailto:gilles.chanteperdrix@xenomai.org

Index

clock_getres
Clocks and timers services., 11

clock_gettime

Clocks and timers services., 11
clock_nanosleep

Clocks and timers services., 12
clock_settime

Clocks and timers services., 12

Clocks and timers services., 10
clock_getres, 11

clock_gettime, 11

clock_nanosleep, 12
clock_settime, 12

do_clock_host_realtime, 13

nanosleep, 13
timer_create, 14

timer_delete, 15
timer_getoverrun, 15

timer_gettime, 16

timer_settime, 16
close

Shared memory services., 62

Condition variables services., 18
pthread_cond_broadcast, 19

pthread_cond_destroy, 19
pthread_cond_init, 19

pthread_cond_signal, 20

pthread_cond_timedwait, 20
pthread_cond_wait, 21

pthread_condattr_destroy, 22

pthread_condattr_getclock, 22
pthread_condattr_getpshared, 23

pthread_condattr_init, 23
pthread_condattr_setclock, 24

pthread_condattr_setpshared, 24

do_clock_host_realtime

Clocks and timers services., 13

ftruncate

Shared memory services., 63

Interruptions management services., 26

pthread_intr_attach_np, 26
pthread_intr_control_np, 27

pthread_intr_detach_np, 28
pthread_intr_wait_np, 28

ksrc/skins/posix/syscall.c, 99

Message queues services., 32

mq_close, 32

mq_getattr, 33

mq_notify, 33

mq_open, 34

mq_receive, 35

mq_send, 36

mq_setattr, 37

mq_timedreceive, 37

mq_timedsend, 38

mq_unlink, 38

mmap

Shared memory services., 64

mq_close

Message queues services., 32

mq_getattr

Message queues services., 33

mq_notify

Message queues services., 33

mq_open

Message queues services., 34

mq_receive

Message queues services., 35

mq_send

Message queues services., 36

mq_setattr

Message queues services., 37

mq_timedreceive

Message queues services., 37

mq_timedsend

Message queues services., 38

mq_unlink

Message queues services., 38

munmap

Shared memory services., 65

Mutex services., 40

pthread_mutex_destroy, 41

pthread_mutex_init, 41

pthread_mutex_lock, 42

pthread_mutex_timedlock, 42

pthread_mutex_trylock, 43

pthread_mutex_unlock, 44

pthread_mutexattr_destroy, 44

pthread_mutexattr_getprotocol, 45

pthread_mutexattr_getpshared, 45

pthread_mutexattr_gettype, 46

pthread_mutexattr_init, 46

pthread_mutexattr_setprotocol, 47

pthread_mutexattr_setpshared, 47

pthread_mutexattr_settype, 48

INDEX 101

nanosleep
Clocks and timers services., 13

POSIX skin., 30
pthread_attr_destroy

Thread creation attributes., 85

pthread_attr_getaffinity_np
Thread creation attributes., 85

pthread_attr_getdetachstate

Thread creation attributes., 86
pthread_attr_getfp_np

Thread creation attributes., 86
pthread_attr_getinheritsched

Thread creation attributes., 87

pthread_attr_getname_np
Thread creation attributes., 87

pthread_attr_getschedparam

Thread creation attributes., 88
pthread_attr_getschedparam_ex

Thread creation attributes., 88
pthread_attr_getschedpolicy

Thread creation attributes., 89

pthread_attr_getscope
Thread creation attributes., 89

pthread_attr_getstacksize

Thread creation attributes., 90
pthread_attr_init

Thread creation attributes., 90
pthread_attr_setaffinity_np

Thread creation attributes., 90

pthread_attr_setdetachstate
Thread creation attributes., 91

pthread_attr_setfp_np

Thread creation attributes., 91
pthread_attr_setinheritsched

Thread creation attributes., 92
pthread_attr_setname_np

Thread creation attributes., 92

pthread_attr_setschedparam
Thread creation attributes., 93

pthread_attr_setschedparam_ex

Thread creation attributes., 93
pthread_attr_setschedpolicy

Thread creation attributes., 94
pthread_attr_setscope

Thread creation attributes., 94

pthread_attr_setstacksize
Thread creation attributes., 95

pthread_cancel

Thread cancellation., 6
pthread_cleanup_pop

Thread cancellation., 6
pthread_cleanup_push

Thread cancellation., 7

pthread_cond_broadcast
Condition variables services., 19

pthread_cond_destroy

Condition variables services., 19
pthread_cond_init

Condition variables services., 19

pthread_cond_signal

Condition variables services., 20

pthread_cond_timedwait

Condition variables services., 20

pthread_cond_wait

Condition variables services., 21

pthread_condattr_destroy

Condition variables services., 22

pthread_condattr_getclock

Condition variables services., 22

pthread_condattr_getpshared

Condition variables services., 23

pthread_condattr_init

Condition variables services., 23

pthread_condattr_setclock

Condition variables services., 24

pthread_condattr_setpshared

Condition variables services., 24

pthread_create

Threads management services., 78

pthread_detach

Threads management services., 79

pthread_equal

Threads management services., 79

pthread_exit

Threads management services., 79

pthread_getschedparam

Threads scheduling services., 50

pthread_getschedparam_ex

Threads scheduling services., 50

pthread_getspecific

Thread-specific data., 96

pthread_intr_attach_np

Interruptions management services., 26

pthread_intr_control_np

Interruptions management services., 27

pthread_intr_detach_np

Interruptions management services., 28

pthread_intr_wait_np

Interruptions management services., 28

pthread_join

Threads management services., 80

pthread_key_create

Thread-specific data., 97

pthread_key_delete

Thread-specific data., 97

pthread_kill

Signals services., 69

pthread_make_periodic_np

Threads management services., 81

pthread_mutex_destroy

Mutex services., 41

pthread_mutex_init

Mutex services., 41

pthread_mutex_lock

Mutex services., 42

pthread_mutex_timedlock

Generated on Sun Oct 13 2013 19:13:26 for Xenomai POSIX skin API by Doxygen

102 INDEX

Mutex services., 42
pthread_mutex_trylock

Mutex services., 43
pthread_mutex_unlock

Mutex services., 44

pthread_mutexattr_destroy
Mutex services., 44

pthread_mutexattr_getprotocol

Mutex services., 45
pthread_mutexattr_getpshared

Mutex services., 45
pthread_mutexattr_gettype

Mutex services., 46

pthread_mutexattr_init
Mutex services., 46

pthread_mutexattr_setprotocol

Mutex services., 47
pthread_mutexattr_setpshared

Mutex services., 47
pthread_mutexattr_settype

Mutex services., 48

pthread_once
Threads management services., 81

pthread_self

Threads management services., 81
pthread_set_mode_np

Threads management services., 82
pthread_set_name_np

Threads management services., 82

pthread_setcancelstate
Thread cancellation., 7

pthread_setcanceltype

Thread cancellation., 8
pthread_setschedparam

Threads scheduling services., 51
pthread_setschedparam_ex

Threads scheduling services., 51

pthread_setspecific
Thread-specific data., 97

pthread_sigmask

Signals services., 69
pthread_sigqueue_np

Signals services., 70

pthread_testcancel
Thread cancellation., 8

pthread_wait_np
Threads management services., 83

sched_get_priority_max

Threads scheduling services., 52
sched_get_priority_min

Threads scheduling services., 52
sched_rr_get_interval

Threads scheduling services., 53

sched_setconfig_np
Threads scheduling services., 53

sched_yield

Threads scheduling services., 54
sem_close

Semaphores services., 55

sem_destroy

Semaphores services., 56

sem_getvalue

Semaphores services., 56

sem_init

Semaphores services., 57

sem_open

Semaphores services., 57

sem_post

Semaphores services., 58

sem_timedwait

Semaphores services., 58

sem_trywait

Semaphores services., 59

sem_unlink

Semaphores services., 60

sem_wait

Semaphores services., 60

Semaphores services., 55

sem_close, 55

sem_destroy, 56

sem_getvalue, 56

sem_init, 57

sem_open, 57

sem_post, 58

sem_timedwait, 58

sem_trywait, 59

sem_unlink, 60

sem_wait, 60

Shared memory services., 62

close, 62

ftruncate, 63

mmap, 64

munmap, 65

shm_open, 65

shm_unlink, 66

shm_open

Shared memory services., 65

shm_unlink

Shared memory services., 66

sigaction

Signals services., 70

sigaddset

Signals services., 72

sigdelset

Signals services., 72

sigemptyset

Signals services., 72

sigfillset

Signals services., 73

sigismember

Signals services., 73

Signals services., 68

pthread_kill, 69

pthread_sigmask, 69

pthread_sigqueue_np, 70

sigaction, 70

Generated on Sun Oct 13 2013 19:13:26 for Xenomai POSIX skin API by Doxygen

INDEX 103

sigaddset, 72
sigdelset, 72

sigemptyset, 72
sigfillset, 73

sigismember, 73

sigpending, 73
sigtimedwait, 74

sigwait, 74

sigwaitinfo, 75
sigpending

Signals services., 73
sigtimedwait

Signals services., 74

sigwait
Signals services., 74

sigwaitinfo

Signals services., 75

Thread cancellation., 5

pthread_cancel, 6
pthread_cleanup_pop, 6

pthread_cleanup_push, 7

pthread_setcancelstate, 7
pthread_setcanceltype, 8

pthread_testcancel, 8

Thread creation attributes., 84
pthread_attr_destroy, 85

pthread_attr_getaffinity_np, 85
pthread_attr_getdetachstate, 86

pthread_attr_getfp_np, 86

pthread_attr_getinheritsched, 87
pthread_attr_getname_np, 87

pthread_attr_getschedparam, 88

pthread_attr_getschedparam_ex, 88
pthread_attr_getschedpolicy, 89

pthread_attr_getscope, 89
pthread_attr_getstacksize, 90

pthread_attr_init, 90

pthread_attr_setaffinity_np, 90
pthread_attr_setdetachstate, 91

pthread_attr_setfp_np, 91

pthread_attr_setinheritsched, 92
pthread_attr_setname_np, 92

pthread_attr_setschedparam, 93
pthread_attr_setschedparam_ex, 93

pthread_attr_setschedpolicy, 94

pthread_attr_setscope, 94
pthread_attr_setstacksize, 95

Thread-specific data., 96

pthread_getspecific, 96
pthread_key_create, 97

pthread_key_delete, 97
pthread_setspecific, 97

Threads management services., 77

pthread_create, 78
pthread_detach, 79

pthread_equal, 79

pthread_exit, 79
pthread_join, 80

pthread_make_periodic_np, 81
pthread_once, 81

pthread_self, 81
pthread_set_mode_np, 82

pthread_set_name_np, 82

pthread_wait_np, 83
Threads scheduling services., 49

pthread_getschedparam, 50

pthread_getschedparam_ex, 50
pthread_setschedparam, 51

pthread_setschedparam_ex, 51
sched_get_priority_max, 52

sched_get_priority_min, 52

sched_rr_get_interval, 53
sched_setconfig_np, 53

sched_yield, 54

timer_create
Clocks and timers services., 14

timer_delete
Clocks and timers services., 15

timer_getoverrun

Clocks and timers services., 15
timer_gettime

Clocks and timers services., 16

timer_settime
Clocks and timers services., 16

Generated on Sun Oct 13 2013 19:13:26 for Xenomai POSIX skin API by Doxygen

	Module Index
	Modules

	File Index
	File List

	Module Documentation
	Thread cancellation.
	Detailed Description
	Function Documentation
	pthread_cancel
	pthread_cleanup_pop
	pthread_cleanup_push
	pthread_setcancelstate
	pthread_setcanceltype
	pthread_testcancel

	Clocks and timers services.
	Detailed Description
	Function Documentation
	clock_getres
	clock_gettime
	clock_nanosleep
	clock_settime
	do_clock_host_realtime
	nanosleep
	timer_create
	timer_delete
	timer_getoverrun
	timer_gettime
	timer_settime

	Condition variables services.
	Detailed Description
	Function Documentation
	pthread_cond_broadcast
	pthread_cond_destroy
	pthread_cond_init
	pthread_cond_signal
	pthread_cond_timedwait
	pthread_cond_wait
	pthread_condattr_destroy
	pthread_condattr_getclock
	pthread_condattr_getpshared
	pthread_condattr_init
	pthread_condattr_setclock
	pthread_condattr_setpshared

	Interruptions management services.
	Detailed Description
	Function Documentation
	pthread_intr_attach_np
	pthread_intr_control_np
	pthread_intr_detach_np
	pthread_intr_wait_np

	POSIX skin.
	Detailed Description

	Message queues services.
	Detailed Description
	Function Documentation
	mq_close
	mq_getattr
	mq_notify
	mq_open
	mq_receive
	mq_send
	mq_setattr
	mq_timedreceive
	mq_timedsend
	mq_unlink

	Mutex services.
	Detailed Description
	Function Documentation
	pthread_mutex_destroy
	pthread_mutex_init
	pthread_mutex_lock
	pthread_mutex_timedlock
	pthread_mutex_trylock
	pthread_mutex_unlock
	pthread_mutexattr_destroy
	pthread_mutexattr_getprotocol
	pthread_mutexattr_getpshared
	pthread_mutexattr_gettype
	pthread_mutexattr_init
	pthread_mutexattr_setprotocol
	pthread_mutexattr_setpshared
	pthread_mutexattr_settype

	Threads scheduling services.
	Detailed Description
	Function Documentation
	pthread_getschedparam
	pthread_getschedparam_ex
	pthread_setschedparam
	pthread_setschedparam_ex
	sched_get_priority_max
	sched_get_priority_min
	sched_rr_get_interval
	sched_setconfig_np
	sched_yield

	Semaphores services.
	Detailed Description
	Function Documentation
	sem_close
	sem_destroy
	sem_getvalue
	sem_init
	sem_open
	sem_post
	sem_timedwait
	sem_trywait
	sem_unlink
	sem_wait

	Shared memory services.
	Detailed Description
	Function Documentation
	close
	ftruncate
	mmap
	munmap
	shm_open
	shm_unlink

	Signals services.
	Detailed Description
	Function Documentation
	pthread_kill
	pthread_sigmask
	pthread_sigqueue_np
	sigaction
	sigaddset
	sigdelset
	sigemptyset
	sigfillset
	sigismember
	sigpending
	sigtimedwait
	sigwait
	sigwaitinfo

	Threads management services.
	Detailed Description
	Function Documentation
	pthread_create
	pthread_detach
	pthread_equal
	pthread_exit
	pthread_join
	pthread_make_periodic_np
	pthread_once
	pthread_self
	pthread_set_mode_np
	pthread_set_name_np
	pthread_wait_np

	Thread creation attributes.
	Detailed Description
	Function Documentation
	pthread_attr_destroy
	pthread_attr_getaffinity_np
	pthread_attr_getdetachstate
	pthread_attr_getfp_np
	pthread_attr_getinheritsched
	pthread_attr_getname_np
	pthread_attr_getschedparam
	pthread_attr_getschedparam_ex
	pthread_attr_getschedpolicy
	pthread_attr_getscope
	pthread_attr_getstacksize
	pthread_attr_init
	pthread_attr_setaffinity_np
	pthread_attr_setdetachstate
	pthread_attr_setfp_np
	pthread_attr_setinheritsched
	pthread_attr_setname_np
	pthread_attr_setschedparam
	pthread_attr_setschedparam_ex
	pthread_attr_setschedpolicy
	pthread_attr_setscope
	pthread_attr_setstacksize

	Thread-specific data.
	Detailed Description
	Function Documentation
	pthread_getspecific
	pthread_key_create
	pthread_key_delete
	pthread_setspecific

	File Documentation
	ksrc/skins/posix/syscall.c File Reference
	Detailed Description

