Xenomai nanokernel API
2.6.3

Generated by Doxygen 1.8.1.2

Sun Oct 132013 19:13:19






Contents

1 Module Index 1
1.1 Modules . . . . . e 1
2 Data Structure Index 3
2.1 DataStructures . . . . . . . L 3
3 File Index 5
3.1 FileList . . . . o e 5
4 Module Documentation 9
41 Threadstateflags. . . . . . . . . . e 9
4.1.1 Detailed Description . . . . . . . ... 10

4.1.2 Macro Definition Documentation . . . . ... .. ... o oo 10
4121 XNHELD . .. . . e 10

4122 XNLOCK . . . . . e 10

4123 XNMIGRATE . . . . . . . e 10

4124 XNPEND . . . . . e 11

4125 XNREADY . . . . . e 11

4126 XNSUSP . . .. . . e 11

4.2 Thread informationflags. . . . . . . . . . 12
4.2.1 Detailed Description . . . . . . . . 12

4.3 Bufferdescriptors. . . . . . .. e 13
4.3.1 Detailed Description . . . . . . . ... 13

4.3.2 Function Documentation . . . . . . . . . ... 15
4.3.21 xnbufd_copy_from_kmem. . . ... ... .. ... ... ... ... ..., 15

4.3.2.2 xnbufd_copy to kmem . . ... ... ... ... 16

4.3.2.3 xnbufd_ invalidate . ... ... ... ... . ... . ... .. ... 17

4.3.24 xnbufd_map_kread . . ... .. .. ... 17

4.3.25 xnbufd_map_kwrite . . . .. .. 17

43.26 xnbufd_map uread . ... ... ... . ... 18

4.3.2.7 xnbufd_map_uwrite . . .. . ... 18

4328 xnbufd reset . . . . ... . . .. ... e 19



CONTENTS

4.4

4.5

4.6

4.7

4.8

4.3.29 xnbufd_unmap_kread . . . . ... ... ... 19
4.3.2.10 xnbufd_unmap_kwrite . . . . .. ..o 20
4.3.2.11 xnbufd_unmap_uread . . . . . . ... 20
4.3.2.12 xnbufd_unmap_uwrite . . . . . ... 20
Dynamic memory allocation services. . . . . . . . . ... 22
4.4.1 Detailed Description . . . . . . . . 22
4.4.2 Function Documentation . . . . . . . . ... L 23
4421 xnheap_alloc . . . . . . . . . e 23
4422 xnheap_destroy . . . . . . . . ... 23
4423 xnheap_extend . ... .. ... ... 24
4424 xnheap_free . . . . . . . ... 24
4425 xnheap_init . . . . . . . . 25
4426 xnheap_schedule_ free . .. .. ... .. ... . ... ... .. 26
4427 xnheap_set label . . . . .. . ... 27
4428 xnheap_test_ and free . . ... ... ... ... o L. 27
Interrupt management. . . . . ... 29
4.5.1 Detailed Description . . . . . . . .. 29
4.5.2 Function Documentation . . . . . . . . . ... 29
4521 xnintr_affinity . . . . ... 29
4522 xnintr_attach . . . . .. .. ... e 30
4523 xnintr_destroy . . . . . . .. 30
4524 xnintr detach. . . . .. .. .. .. ... ... 31
4525 xnintr_disable . . ... ... .. .. ... 31
4526 xnintr_enable. .. ... ... ... ... e 32
4527 xnintrinit . . . . . L 32
Lightweight key-to-object mapping service . . . . . . . . . . . ... 35
4.6.1 Detailed Description . . . . . . . ... 35
4.6.2 Function Documentation . . . . . . . . . ... 35
4.6.21 xnmap_create . . . . . .. 35
46.22 xnmap_delete . . . .. ... ... 36
4.6.2.3 xnmap_enter . . . . ... e 36
46.24 xnmap_fetch . . . . .. .. . . .. 37
46.25 xnmap_fetch_nocheck . ... ... ... ... ... .. .. ... ..... 38
4.6.2.6 XNMAP_remoOVe . . . . . . . i it e e 38
Xenomai nucleus. . . . . . . e 39
4.7.1 Detailed Description . . . . . . . . 40
Real-time pod services. . . . . . . . . . e 41
4.8.1 Detailed Description . . . . . . . ... 42
4.8.2 Function Documentation . . . . . . . . ... . 42
4.8.2.1 xnpod_abort thread . . . . . .. .. ... 42

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen



CONTENTS iiii
48.22 xnpod_add_hook . .. .. ... ... 43
4.8.2.3 xnpod_delete thread . . .. .. ... ... ... ... 43
4.8.2.4 xnpod_disable_timesource . . . . ... ... L oo 44
4.8.25 xnpod_dispatch_signals. . . . ... ... ... ... L. 44
4.8.2.6 xnpod_enable_timesource . .. ... .. ... ... 45
4.8.2.7 xnpod_init . . . ... e 45
4.8.2.8 xnpod_init_thread . . . . . . .. . ... . 46
4.8.2.9 xnpod_migrate_thread . . . .. ... ... .. ... ... .. 47
4.8.2.10 xnpod_remove_hook . . . . .. .. ..o 48
4.8.2.11 xnpod_restart thread . . . . .. .. ... ... oL 48
4.8.2.12 xnpod_resume_thread . . . . ... ... ... ... ... .. 49
4.8.2.13 xnpod_schedule . . . . . . . .. ... 50
4.8.2.14 xnpod_set_thread mode . . . . . . . ... ... ... 51
4.8.2.15 xnpod_set_thread periodic . . . . . . . . ..o 51
4.8.2.16 xnpod_set_thread_schedparam . . ... ... ... ... .. ....... 52
4.8.2.17 xnpod_set_thread_tslice . . .. ... ... .. ... ... .. .. .. ... 53
4.8.2.18 xnpod_shutdown . . . . . . . ... 54
4.8.2.19 xnpod_start thread . . . . . .. .. ..o 54
4.8.2.20 xnpod_stop_thread . . . . . .. .. ... .. .. ... 55
4.8.2.21 xnpod_suspend_thread . . . . . ... ... ... ... ... .. 56
4.8.2.22 xnpod_trap_fault . . . . . . . ... 57
4.8.2.23 xnpod_unblock_thread . . . .. .. ... ... oo 57
4.8.2.24 xnpod_wait_thread_period . . . . . ... .. ... 0L 58
4.8.2.25 xnpod_welcome_thread . . . . . .. ... ... oL 59

4.9 Registry ServiCes. . . . . . . . e 60
4.9.1 Detailed Description . . . . . . . . 60
4.9.2 Function Documentation. . . . . . . . . ... 60

4.9.21 xnregistry_bind . . . ... 60
4.9.2.2 xnregistry_enter . . . . .. e 61
49.23 xnregistry fetch . . . . . . ... 62
4.9.24 xnregistry_get . . . .. 63
4.9.25 xnregistry_put . . . ... 63
4.9.2.6 XNregistry_remove . . . . . . ... e e 64
49.2.7 xnregistry_remove_safe. . . . ... ... oo 64

4.10 File descriptors events multiplexing services. . . . . . . ... .. ... ... ... ... 66
4.10.1 Detailed Description . . . . . . . . .. 66
4.10.2 Function Documentation . . . . . . . . . . ... 67

41021 xnselect. . . . . . . 67
4.10.2.2 xnselect_bind . . ... ... ... 67
4.10.2.3 xnselect_destroy . . . . . . . ... 68

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen



CONTENTS

4.10.2.4 xnselect_init . . . . .. ... 68

4.10.2.5 xnselector_destroy . . . . . . . ... 68

4.10.2.6 xnselector init . . . . . .. ... 68

4.11 Real-time shadow services. . . . . . . . . . . . e 69
4.11.1 Detailed Description . . . . . . . . . . 69
4.11.2 Function Documentation . . . . . . . . . . ... 69
4.11.2.1 xnshadow_harden . . . . . . .. . ... ... 69

41122 xnshadow_map . . . . . . . .. ... 70

4.11.23 xnshadow_ppd_get . . . . . .. ... . . 70

4.11.2.4 xnshadow relax . . . . . . . . . . . . . ... e 71

4.12 Thread synchronization services. . . . . . . . . . . . . 72
4.12.1 Detailed Description . . . . . . . .. .. 72
4.12.2 Function Documentation . . . . . . . . . . .. 73
41221 xnsynch_acquire . . . . . . . . .. 73

412.2.2 xnsynch_clear_boost . . . . .. .. .. ... .. .. ... 73

41223 xnsynch_flush . . . .. .. ... 74

4.12.2.4 xnsynch_forget_sleeper . . . . . . . . ... 75

41225 xnsynch_init . . . . . . . 75

4.12.2.6 xnsynch_peek_pendq . . . . . . .. . ... . 76

41227 xnsynch_release . . . . . . . . ... 76

4.12.2.8 xnsynch_release_all_ownerships . . . ... .. ... .. .. ....... 77

4.12.2.9 xnsynch_requeue_sleeper . . . . . . .. ... ..o 77
4.12.2.10xnsynch_sleep_on . . . . . . . .. 78
4.12.2.11xnsynch_wakeup_one_sleeper . . . . . . . . . .. ... L. 78
4.12.2.12xnsynch_wakeup_this_sleeper . . . . . . . . ... ... oL 79

413 Timebase services. . . . . . . . . e 81
4.13.1 Detailed Description . . . . . . . ... . 81
4.13.2 Function Documentation . . . . . . . . . ... 82
413.2.1 xntbase_adjust_time . . . . .. ... 82

413.2.2 xntbase_alloc . . . .. ... . ... .. 82

4.13.2.3 xntbase_convert . . . . . .. L 83

413.2.4 xntbase free . . . . . . . .. 84

413.2.5 xntbase_get time . . . . . . ... 84

413.2.6 xntbase_start . . . . . ... ... 85

4.13.2.7 xntbase_sStop . . . . . . ... 85

4.13.2.8 xntbase_switch . . . . . . . ... ... 86

4.13.2.9 xntbase_tick . . . . . . ... .. e 86
4.13.2.10xntbase_update . . . . . ... 87

414 TIMEr SEIVICES. . . . . v v i e e e e 88
4.14.1 Detailed Description . . . . . . . . .. 88

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen



CONTENTS v
4.14.2 Function Documentation . . . . . . . . . ... 89
4.14.21 xntimer_destroy . . . . . . . .. 89
4.14.2.2 xntimer_freeze . . . . . . . ... e 89
41423 xntimer_get date . . . ... .. .. ... ... 89
414.2.4 xntimer_get_interval . . . . . .. ... 90
41425 xntimer_get_overruns . . . . . . . .. 91
4.14.2.6 xntimer_get timeout . . . . . .. . . .. ... ... 91
41427 xntimer_init . . . . . ... 91
414.2.8 xntimer_start . . . . . . . ... 92
41429 xntimer_stop . . . . . . . 93
4.14.210xntimer_tick_aperiodic . . . . . . ... 93
4142 11xntimer_tick_periodic . . . . . ... 94

4.15 Virtual file services . . . . . . . . o e 95
4.15.1 Detailed Description . . . . . . . . .. 96
4.15.2 Function Documentation . . . . . . . . . ... 96
41521 xnvfile_destroy . . . . . . . . L 96
41522 xnvfile_get_ blob . . . ... . ... ... . 97
4.15.2.3 xnvfile_get_integer . . . . . ... 97
4.15.2.4 xnvfile_get_string . . . . . . ... 98
4.15.2.5 xnvfile_init dir . . . . . . .. ... 98
415.2.6 xnvfile_init link . . . . . . .. ... . 98
4.15.2.7 xnvfile_init_regular . . . . . . .. ... 99
4.15.2.8 xnvfile_init_snapshot . . . . . . . . ... ... o 99
4.15.3 Variable Documentation . . . . . . . . ... 100
4.15.3.1 nkvfroot . . . . . . 100
4.15.3.2 nkvfroot . . . . . . 100

416 HAL. . . . . e e 101
4.16.1 Detailed Description . . . . . . . . . e 102
4.16.2 Function Documentation . . . . . . . . . . .. 102
416.21 rthal_apc_alloc. . . . . . . . .. 102
416.2.2 rthal_apc_free . . . . . . . L 103
416.2.3 rthal_irg_disable . . . . . . . .. . 103
416.2.4 rthal_irg_enable . . . . . . . .. .. 103
4.16.2.5 rthal_irg_host_release . . . . . . . . ... oo 104
4.16.2.6 rthal_irg_host_request . . . . . .. . ... oo 104
416.2.7 rthal_irg_release . . . . . . . . . . L 105
4.16.2.8 rthal_irg_request . . . . . . . ... 105
4.16.2.9 rthal_timer_release . . . .. .. ... . . . ... ... 106
4.16.2.10rthal_timer_request . . . . . . . . .. L 106
416.211rthal_trap_catch . . . . . . . .. .. 107

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen



vi CONTENTS
417 Sched . . . . . . e 109
4.17.1 Detailed Description . . . . . . . . .. 109
4.17.2 Function Documentation . . . . . . . . . ... 109
417.2.1 xnsched rotate . . . . ... .. .. ... 109

5 Data Structure Documentation 111
5.1 xnpod Struct Reference . . . . . . . . . . ... 111
5.1.1 Detailed Description . . . . . . . .. 111
5.1.2 Field Documentation . . . . . . . . . ... 112
5121 refent . . . o e 112

5122 sched . . . . . . . e 112

51238 status . . . . . . L 112

5124 tdeleteq . . . . . . . . . e 112

5125 threadqg . . . . . . . . e 112

5126 timerlck . . . . . . 112

5127 tsliced. . . . . . 112

5128 ftslicer . . . . . 112

5129 ftstartg. . . . . . . . 112

51210 tswitchg . . . . . . . . 113

5.2 xnsched Struct Reference . . . . . . . . . 113
5.2.1 Detailed Description . . . . . . . . 113
5.2.2 Field Documentation . . . . . . . . . .. 113
5221 CUIT . . o 113

5222 htimer . . . . . . e 113

5223 inesting . . . . . . . 113

5224 Iflags . . . . . . e 113

5225 rootcb . . . .. 114

5.22.6 rt .. 114

5227 status . . . . . 114

5.3 xnthread_info Struct Reference . . . . . . . . . . . . . . .. ... 114
5.3.1 Detailed Description . . . . . . . . . 115
5.8.2 Field Documentation . . . . . . . . . .. 115
5.3.21 affinity. . . . . . 115

5.3.22 bprio . ... 115

5.3.2.3 CPHO . . o 115

58324 CPU . . . 115

58325 ctxswitches . . . . . . . .. 115

58326 exectime . . . . . . . . .. 115

5.8.2.7 modeswitches . . . . . . .. e 115

58328 name . . . .. 115

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen



CONTENTS vii
5.3.2.9 pagefaults . . .. ... ... 115

53210 relpoint . . . . . . 115

5.3.211 state . . .. 116

5.4 xnvfile_lock_ops Struct Reference . . . . . . . . .. .. 116
5.4.1 Detailed Description . . . . . . . . 116
5.4.2 Field Documentation . . . . . . . . . ... 116
5421 get ... 116

5422 put ... e 116

5.5 xnvfile_regular_iterator Struct Reference . . . . . . . ... ... .. ... ... .. ... 117
5.5.1 Detailed Description . . . . . . . . L 117
5.5.2 Field Documentation . . . . . . . . . ... 117
5521 POS . . . 117

5522 private . . . .. 117

55283 Seq . . . 117

55.24 Vile . . ... e 117

5.6 xnvfile_regular_ops Struct Reference . . . . . . . . . . ... oo 118
5.6.1 Detailed Description . . . . . . . . . 118
5.6.2 Field Documentation . . . . . . . . . . ... 118
5.6.2.1 begin . . . .. e 118

56.2.2 end . . . ... e 119

5.6.23 next . . . . .. e 119

5.6.2.4 rewind . . .. e 119

5,6.25 show . .. .. ... ... 120

5.6.2.6 store . . . .. 120

5.7 xnvfile_rev_tag Struct Reference . . . . . . . . . ... . . ... 121
5.7.1 Detailed Description . . . . . . . .. 121
5.7.2 Field Documentation . . . . . . . . . ... 121
5721 rev . e 121

5.8 xnvfile_snapshot Struct Reference . . . . . . . . .. ... ... . ... .. 121
5.8.1 Detailed Description . . . . . . . ... 121

5.9 xnvfile_snapshot_iterator Struct Reference . . . . . . ... ... ... .. L. 122
5.9.1 Detailed Description . . . . . . . .. 122
5.9.2 Field Documentation . . . . . . . . . ... 122
5.9.21 databuf . ... ... .. 122

5,922 endfn . . .. 123

50283 nrdata. . . . . ... 123

5924 private . . ... 123

5925 seq . . ... 123

5,926 Vile . . ... 123

5.10 xnvfile_snapshot_ops Struct Reference . . . . . . . ... ... ... .. ... ... ... 123

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen



viii CONTENTS

5.10.1 Detailed Description . . . . . . . . . ... 123
5.10.2 Field Documentation . . . . . . . . . ... 124
510.2.1 begin . . . .. 124

510.2.2 end . . . .. e e 124

51023 next . . . . . e 124

510.2.4 rewind . . . .. e e 125

510.25 show . . . . . . L 126

510.2.6 store . . . . . 126

6 File Documentation 127
6.1 include/nucleus/bufd.h File Reference . . . . .. .. ... ... . .. ... .. ... ..., 127
6.1.1 Detailed Description . . . . . . . ... .. 128

6.2 include/nucleus/hostrt.h File Reference . . . . . ... ... ... ... ... L. 128
6.2.1 Detailed Description . . . . . . . ... . 129

6.3 include/nucleus/map.h File Reference . . . . .. .. ... ... .. ... ... .. .. ... 130
6.3.1 Detailed Description . . . . . . . ... . 130

6.4 include/nucleus/pod.h File Reference . . . . . . . . . ... . ... . ... .. 131
6.4.1 Detailed Description . . . . . . . ... 132

6.5 include/nucleus/registry.h File Reference . . . . . . . .. ... ... ... .. ... 133
6.5.1 Detailed Description . . . . . . . ... . 134

6.6 include/nucleus/sched-idle.h File Reference . . . . . . .. .. ... ... .. ........ 134
6.6.1 Detailed Description . . . . . . . .. .. .. 134

6.7 include/nucleus/sched-rt.h File Reference . . . . .. ... ... ... .. .. ........ 135
6.7.1 Detailed Description . . . . . . . ... 135

6.8 include/nucleus/sched-sporadic.h File Reference . . . . . ... ... ... ... ...... 135
6.8.1 Detailed Description . . . . . . . .. ... 135

6.9 include/nucleus/sched-tp.h File Reference . . . . . . . .. ... ... .. L. 136
6.9.1 Detailed Description . . . . . . . ... . 136
6.10 include/nucleus/sched.h File Reference . . . . . .. . ... ... ... ... ... ..... 136
6.10.1 Detailed Description . . . . . . . . . . .. . e 137

6.11 include/nucleus/select.h File Reference . . . . . ... ... ... ... .. ... ...... 138
6.11.1 Detailed Description . . . . . . . . . . .. . 138
6.12 include/nucleus/timebase.h File Reference . . . . .. ... ... ... ... .. ...... 139
6.12.1 Detailed Description . . . . . . . . . . 140
6.13 include/nucleus/timer.h File Reference . . . . . . . . . .. ... ... .. 140
6.13.1 Detailed Description . . . . . . . . . . 141
6.14 include/nucleus/vdso.h File Reference . . . . . . .. . .. ... .. ... ... ... ..., 141
6.14.1 Detailed Description . . . . . . . . . 142
6.15 include/nucleus/vfile.h File Reference . . . . . . . . . .. ... . .. .. 142
6.15.1 Detailed Description . . . . . . . . . . 144

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen



CONTENTS ix

6.16 ksrc/arch/arm/hal.c File Reference . . . . . . . . .. . .. ... ... o 144
6.16.1 Detailed Description . . . . . . . . . . 144
6.17 ksrc/arch/blackfin/hal.c File Reference . . . . . . .. . .. ... . . . . ... ... . ... 145
6.17.1 Detailed Description . . . . . . . . . . ... 145
6.18 ksrc/arch/generic/hal.c File Reference . . . . . . . . ... .. .. . L. 146
6.18.1 Detailed Description . . . . . . . . . . 146
6.19 ksrc/arch/nios2/hal.c File Reference . . . . . . . . . . .. ... o 146
6.19.1 Detailed Description . . . . . . . . . . .. 147
6.20 ksrc/arch/powerpc/hal.c File Reference . . . . . . . . . . .. .o L. 147
6.20.1 Detailed Description . . . . . . . . . . 148
6.21 ksrc/arch/sh/hal.c File Reference . . . . . . . . . .. . . 148
6.21.1 Detailed Description . . . . . . . . . .. . 148
6.22 ksrc/arch/x86/hal-common.c File Reference . . . . . ... ... ... ... ... ...... 149
6.22.1 Detailed Description . . . . . . . . . . 149
6.23 ksrc/arch/x86/hal_32.c File Reference . . . . . . .. . .. . . ... . . ... ... ..... 150
6.23.1 Detailed Description . . . . . . . .. ... 150
6.24 ksrc/arch/x86/hal_64.c File Reference . . . . . . . . . . . ... ... ... ... ..... 150
6.24.1 Detailed Description . . . . . . . . . . 151
6.25 ksrc/arch/x86/smi.c File Reference . . . . . . .. .. . ... .. ... 151
6.25.1 Detailed Description . . . . . . . . . ... 151
6.26 ksrc/nucleus/bufd.c File Reference . . . . . . . . .. ... o 152
6.26.1 Detailed Description . . . . . . . . . . L 152
6.27 ksrc/nucleus/heap.c File Reference . . . . . . . . . . . . .. 153
6.27.1 Detailed Description . . . . . . . ... . 153
6.28 ksrc/nucleus/intr.c File Reference . . . . . . . . . .. 154
6.28.1 Detailed Description . . . . . . . . . . 154
6.29 ksrc/nucleus/map.c File Reference . . . . . . .. .. . .. ... 155
6.29.1 Detailed Description . . . . . . . . . 155
6.30 ksrc/nucleus/pod.c File Reference . . . . . . .. .. . 156
6.30.1 Detailed Description . . . . . . . . . . .. e 157
6.31 ksrc/nucleus/registry.c File Reference . . . . . . .. . .. .. . ... . ... .. ... .. 157
6.31.1 Detailed Description . . . . . . . . . . 158
6.32 ksrc/nucleus/sched-idle.c File Reference . . . . . . . . ... .. ... ... ... ... 159
6.32.1 Detailed Description . . . . . . . . . . .. 159
6.33 ksrc/nucleus/sched-rt.c File Reference . . . . . . ... ... ... ... ... ... . ... 159
6.33.1 Detailed Description . . . . . . . . . 160
6.34 ksrc/nucleus/sched-sporadic.c File Reference . . . . . . ... ... ... ... ... .. 160
6.34.1 Detailed Description . . . . . . . .. .. .. 161
6.35 ksrc/nucleus/sched-tp.c File Reference . . . . . . . . . .. .. .. ... . 161
6.35.1 Detailed Description . . . . . . . . . L 162

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen



CONTENTS

6.36 ksrc/nucleus/sched.c File Reference . . . . . .. .. ... ... . .. ... .. 163
6.36.1 Detailed Description . . . . . . . . . . .. . 163
6.37 ksrc/nucleus/select.c File Reference . . . . . . . .. ... . . oL 163
6.37.1 Detailed Description . . . . . . . . .. . 164
6.38 ksrc/nucleus/shadow.c File Reference . . . . . . ... ... ... ... ... .. ... 165
6.38.1 Detailed Description . . . . . . . . . ... . 165
6.39 ksrc/nucleus/synch.c File Reference . . . . . .. .. . ... . . . . ... . 165
6.39.1 Detailed Description . . . . . . . .. ... e 167
6.40 ksrc/nucleus/timebase.c File Reference . . . . . ... ... ... ... o L. 167
6.40.1 Detailed Description . . . . . . . . . . 168
6.41 ksrc/nucleus/timer.c File Reference . . . . . . . . .. ... o oo 168
6.41.1 Detailed Description . . . . . . . . . . 169
6.42 ksrc/nucleus/viile.c File Reference . . . . . . . . . . .. L 169
6.42.1 Detailed Description . . . . . . . . . . 170

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen



Chapter 1

Module Index

1.1  Modules

Here is a list of all modules:

Xenomai nucleus. . . . . . . . 39
Thread stateflags. . . . . . . . . . . 9
Thread information flags. . . . . . . . . . .. 12
Buffer descriptors. . . . . . . .. 13
Dynamic memory allocation services. . . . . . . . . . ... .o 22
Interrupt management. . . . . .. 29
Lightweight key-to-object mapping service . . . . . . . . . .. ... 35
Real-time pod services. . . . . . . . . . . e 41
Registry services. . . . . . . . e 60
File descriptors events multiplexing services. . . . . . . . . . ... ... 66
Real-time shadow services. . . . . . . . . . . 69
Thread synchronization services. . . . . . . . . . . . 72
Time base Services. . . . . . . . . e e 81
TIMer ServiCes. . . . . . . e 88
Virtual file services . . . . . . . . 95

HAL. . . e e 101



Module Index

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen



Chapter 2

Data Structure Index

2.1 Data Structures

Here are the data structures with brief descriptions:

xnpod

Real-time pod descriptor . . . . . . . .. 111
xnsched

Scheduling information structure . . . . . . ... oL 113
xnthread_info

Structure containing thread information . . . . . .. ... ... ... L. 114
xnvfile_lock_ops

Vfile locking operations . . . . . . . .. L 116
xnvfile_regular_iterator

Regular vfileiterator . . . . . . . . . 117
xnvfile_regular_ops

Regular vfile operation descriptor . . . . . . .. ... 118
xnvfile_rev_tag

Snapshotrevisiontag . . . . . . .. .. 121
xnvfile_snapshot

Snapshot vfile descriptor . . . . ... 121
xnvfile_snapshot_iterator

Snapshot-driven Vile iterator . . . . . . . ... 122

xnvfile_snapshot_ops
Snapshot vfile operation descriptor . . . . . ... L 123



Data Structure Index

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen



Chapter 3

File Index

3.1

File List

Here is a list of all documented files with brief descriptions:

include/nucleus/assert.h . . . . . . . . ??
include/nucleus/bheap.h . . . . . . . . ??
include/nucleus/bufd.h . . . . L 127
include/nucleus/compiler.h . . . . . . .. ??
include/nucleus/heap.h . . . . . . . . . ??
include/nucleus/hostrt.h

Definitions for global semaphore heap shared objects . . . . . .. ... ... ... .. 128
include/nucleus/intr.h . . . . . oL ??
include/nucleus/jhash.h . . . . . . . ??
include/nucleus/map.h . . . . L 130
include/nucleus/module.h . . . . . . ??
include/nucleus/pipe.h . . . . .. ??
include/nucleus/pod.h

Real-time pod interface header . . . . . . . . .. .. ... 131
include/nucleus/ppd.h . . . . . ??
include/nucleus/queue.h . . . . . . . ??
include/nucleus/registry.h

This file is part of the Xenomai project . . . . .. .. ... .. ... ... .. ... ... 133
include/nucleus/sched-idle.h

Definitions for the IDLE schedulingclass . . .. .. ... ... ... ... ....... 134
include/nucleus/sched-rt.h

Definitions for the RT schedulingclass . . . .. ... ... ... ... ... ...... 135
include/nucleus/sched-sporadic.h

Definitions for the SSP schedulingclass . . . .. ... ... ... .. ... ... .... 135
include/nucleus/sched-tp.h

Definitions for the TP schedulingclass . . . . . . ... .. ... ... ... ... .... 136
include/nucleus/sched.h

Schedulerinterface header . . . . . . . . . . ... .. 136
include/nucleus/schedparam.h . . . . . .. .. .. ... ??
include/nucleus/schedqueue.h . . . . . . . ... ??
include/nucleus/select.h

File descriptors events multiplexing header . . . . . . .. .. ... .. ... .. .... 138
include/nucleus/seqlock.h . . . . . . . . L ??
include/nucleus/shadow.h . . . . . . . ... ??
include/nucleus/stat.h . . . . . . . . ??
include/nucleus/synch.h . . . . . . . ??
include/nucleus/sys_ppd.h . . . . . . ??

include/nucleus/system.h . . . . . .. ??



File Index

include/nucleus/thread.h . . . . . . . . . . ... ??
include/nucleus/timebase.h . . . . . .. L 139
include/nucleus/timer.h . . . . oL L 140
include/nucleus/trace.h . . . . . . . L ??
include/nucleus/types.h . . . . . . ??
include/nucleus/vdso.h

Definitions for global semaphore heap shared objects . . . . . .. ... ... ... .. 141
include/nucleus/version.h . . . . . .. ?2?
include/nucleus/vfile.h

This file is part of the Xenomai project . . . . .. . .. .. ... ... L. 142
include/nucleus/xenomai.h . . . . . ... ??
ksrc/arch/arm/hal.c

Adeos-based Real-Time Abstraction LayerforARM . . . . . . .. .. ... ... ... 144
ksrc/arch/blackfin/hal.c

Adeos-based Real-Time Abstraction Layer for the Blackfin architecture . . . . .. .. 145
ksrc/arch/generic/hal.c

Generic Real-Time HAL . . . . . . . . . . e 146
ksrc/arch/nios2/hal.c

Adeos-based Real-Time Abstraction Layer for the NIOS2 architecture . . . .. .. .. 146
ksrc/arch/powerpc/hal.c

Adeos-based Real-Time Abstraction Layer for PowerPC . . . . . . .. ... ... ... 147
ksrc/arch/sh/hal.c

Adeos-based Real-Time Abstraction Layer for the SuperH architecture . . . . .. .. 148
ksrc/arch/x86/hal-common.c

Adeos-based Real-Time Abstraction Layerforx86 . . .. .. ... ... .. ...... 149
ksrc/arch/x86/hal_32.c

Adeos-based Real-Time Abstraction Layerforx86 . . . ... ... ... ........ 150
ksrc/arch/x86/hal_64.c

Adeos-based Real-Time Abstraction Layerforx86_64 . . .. ... ... ........ 150
ksrc/arch/x86/smi.c

SMIworkaround for x86 . . . . . . . . . .. 151
ksrc/nucleus/bufd.c . . . . L Lo 152
ksrc/nucleus/heap.c

Dynamic memory allocation services . . . . . . .. ... Lo 153
ksrc/nucleus/intr.c

Interrupt management . . . . .. 154
ksrc/nucleus/map.C . . . . . . . e 155
ksrc/nucleus/pod.c

Real-time pod services . . . . . . . . . e 156
ksrc/nucleus/registry.c

This file is part of the Xenomai project . . . . .. .. ... .. ... ... .. ... ... 157
ksrc/nucleus/sched-idle.c

Idle scheduling class implementation (i.e. Linux placeholder) . . ... ... .. .... 159
ksrc/nucleus/sched-rt.c

Common real-time scheduling class implementation (FIFO+RR) . ... ... .. .. 159
ksrc/nucleus/sched-sporadic.c

POSIX SCHED_SPORADIC schedulingclass . ... .. ... .. .. ......... 160
ksrc/nucleus/sched-tp.c

Temporal partitioning (typical of IMA systems) . . . ... .. ... ... .. ...... 161
ksrc/nucleus/sched.c . . . . . . . L e 163
ksrc/nucleus/select.c

File descriptors events multiplexing . . . . . . . . . .. ... Lo 163
ksrc/nucleus/shadow.c

Real-time shadow services . . . . . . . . . . . . . ... 165
ksrc/nucleus/synch.c

Thread synchronization services . . . . . . . . . . ... 165
ksrc/nucleus/timebase.c . . . . . L 167
ksrc/nucleus/iimer.C . . . . . . . L L e e 168

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen



3.1 File List

ksrc/nucleus/vfile.c
This file is part of the Xenomai project . . . . .. . . . .. ... ... .. ...

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen



File Index

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen



Chapter 4

Module Documentation

4.1 Thread state flags.

Bits reporting permanent or transient states of thread.

Collaboration diagram for Thread state flags.:

Xenomai nucleus. |«@—— Thread state flags.

Macros

o #define XNSUSP 0x00000001

Suspended.
e #define XNPEND 0x00000002

Sleep-wait for a resource.
¢ #define XNDELAY 0x00000004

Delayed.
e #define XNREADY 0x00000008

Linked to the ready queue.
e #define XNDORMANT 0x00000010

Not started yet or killed.
e #define XNZOMBIE 0x00000020

Zombie thread in deletion process.
e #define XNRESTART 0x00000040

Restarting thread.
o #define XNSTARTED 0x00000080

Thread has been started.
o #define XNMAPPED 0x00000100

Mapped to a regular Linux task (shadow only)
e #define XNRELAX 0x00000200

Relaxed shadow thread (blocking bit)
e #define XNMIGRATE 0x00000400

Thread is currently migrating to another CPU.
e #define XNHELD 0x00000800

Thread is held to process emergency.


$group__nucleus.html

10

Module Documentation

o #define XNBOOST 0x00001000

Undergoes a PIP boost.
e #define XNDEBUG 0x00002000

Hit a debugger breakpoint (shadow only)

e #define XNLOCK 0x00004000
Holds the scheduler lock (i.e.
¢ #define XNRRB 0x00008000
Undergoes a round-robin scheduling.
¢ #define XNASDI 0x00010000
ASR are disabled.
o #define XNDEFCAN 0x00020000

Deferred cancelability mode (self-set only)

o #define XNTRAPSW 0x00040000

Trap execution mode switches.
¢ #define XNRPIOFF 0x00080000

Stop priority coupling (shadow only)
¢ #define XNFPU 0x00100000

Thread uses FPU.
o #define XNSHADOW 0x00200000

Shadow thread.
o #define XNROOT 0x00400000

Root thread (that is, Linux/IDLE)
e #define XNOTHER 0x00800000

Non real-time shadow (prio=0)

4.1.1 Detailed Description

Bits reporting permanent or transient states of thread.

4.1.2 Macro Definition Documentation
4.1.2.1 #define XNHELD 0x00000800

Thread is held to process emergency.

Referenced by xnpod_resume_thread(), and xnpod_suspend_thread().

4.1.2.2 #define XNLOCK 0x00004000

Holds the scheduler lock (i.e.

not preemptible)

Referenced by xnpod_set_thread_mode(), and xnpod_welcome_thread().

4.1.2.3 #define XNMIGRATE 0x00000400

Thread is currently migrating to another CPU.

Referenced by xnpod_delete_thread().

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen



4.1 Thread state flags. 11

4.1.2.4 #define XNPEND 0x00000002

Sleep-wait for a resource.

Referenced by xnpod_delete_thread(), xnpod_resume_thread(), xnpod_unblock_thread(), xnsynch_-
acquire(), xnsynch_flush(), xnsynch_forget_sleeper(), xnsynch_sleep_on(), xnsynch_wakeup_one_-
sleeper(), and xnsynch_wakeup_this_sleeper().

4.1.2.5 #define XNREADY 0x00000008

Linked to the ready queue.

Referenced by xnpod_delete_thread(), xnpod_resume_thread(), xnpod_start_thread(), and xnpod_-
suspend_thread().

4.1.2.6 #define XNSUSP 0x00000001

Suspended.

Referenced by xnpod_init_thread(), xnpod_start_thread(), xnpod_suspend_thread(), and xnpod_trap_-
fault().

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen



12

Module Documentation

4.2 Thread information flags.

Bits reporting events notified to the thread.

Collaboration diagram for Thread information flags.:

Xenomai nucleus.

<

Macros

e #define XNTIMEO 0x00000001
Woken up due to a timeout condition.

e #define XNRMID 0x00000002
Pending on a removed resource.

¢ #define XNBREAK 0x00000004
Forcibly awaken from a wait state.

e #define XNKICKED 0x00000008

Kicked upon Linux signal (shadow only)
o #define XNWAKEN 0x00000010

Thread information
flags.

Thread waken up upon resource availability.

o #define XNROBBED 0x00000020

Robbed from resource ownership.
e #define XNATOMIC 0x00000040

In atomic switch from secondary to primary mode.

o #define XNAFFSET 0x00000080
CPU affinity changed from primary mode.
¢ #define XNPRIOSET 0x00000100
Priority changed from primary mode.
o #define XNABORT 0x00000200
Thread is being aborted.
o #define XNCANPND 0x00000400

Cancellation request is pending.
e #define XNAMOK 0x00000800

Runaway, watchdog signal pending (shadow only)

e #define XNSWREP 0x00001000
Mode switch already reported.

4.21 Detailed Description

Bits reporting events notified to the thread.

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen


$group__nucleus.html

4.3 Buffer descriptors. 13

4.3 Buffer descriptors.

Collaboration diagram for Buffer descriptors.:

Xenomai nucleus. [«——— Buffer descriptors.

Files

o file bufd.h
o file bufd.c

Functions

e static void xnbufd_map_uread (struct xnbufd =bufd, const void __user =ptr, size_t len)
Initialize a buffer descriptor for reading from user memory.

e static void xnbufd_map_uwrite (struct xnbufd =bufd, void __user =ptr, size_t len)
Initialize a buffer descriptor for writing to user memory.

e ssize_t xnbufd_unmap_uread (struct xnbufd =bufd)
Finalize a buffer descriptor obtained from xnbufd_map_uread().

e ssize_t xnbufd_unmap_uwrite (struct xnbufd *bufd)
Finalize a buffer descriptor obtained from xnbufd_map_uwrite().

¢ static void xnbufd_map_kread (struct xnbufd =bufd, const void =ptr, size_t len)
Initialize a buffer descriptor for reading from kernel memory.

e static void xnbufd_map_kwrite (struct xnbufd =bufd, void =ptr, size_t len)
Initialize a buffer descriptor for writing to kernel memory.

e ssize_t xnbufd_unmap_kread (struct xnbufd =bufd)
Finalize a buffer descriptor obtained from xnbufd_map_kread().

e ssize_t xnbufd_unmap_kwrite (struct xnbufd =bufd)
Finalize a buffer descriptor obtained from xnbufd_map_kwrite().

e ssize_t xnbufd_copy_to_kmem (void =ptr, struct xnbufd +bufd, size_t len)
Copy memory covered by a buffer descriptor to kernel memory.

e ssize_t xnbufd_copy_from_kmem (struct xnbufd =bufd, void *from, size t len)
Copy kernel memory to the area covered by a buffer descriptor.

¢ void xnbufd_invalidate (struct xnbufd =bufd)
Invalidate a buffer descriptor.

e static void xnbufd_reset (struct xnbufd =bufd)
Reset a buffer descriptor.

4.3.1 Detailed Description

A buffer descriptor is a simple abstraction dealing with copy operations to/from memory buffers which
may belong to different address spaces.

To this end, the buffer descriptor library provides a small set of copy routines which are aware of address
space restrictions when moving data, and a generic container type which can hold a reference to - or
cover - a particular memory area, either present in kernel space, or in any of the existing user memory
contexts.

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen


$group__nucleus.html

14 Module Documentation

The goal of the buffer descriptor abstraction is to hide address space specifics from Xenomai services
dealing with memory areas, allowing them to operate on multiple address spaces seamlessly.

The common usage patterns are as follows:

¢ Implementing a Xenomai syscall returning a bulk of data to the caller, which may have to be copied
back to either kernel or user space:

[Syscall implementation]
ssize_t rt_bulk_read_inner(struct xnbufd *bufd)
{

ssize_t ret;

size_t len;

void *bulk;

bulk = get_next_readable_bulk(&len);
ret = xnbufd_copy_from_kmem(bufd, bulk, min(bufd->b_len, len));
free_bulk(bulk);

ret = this_may_fail(Q);
(ret)
xnbufd_invalidate (bufd);

ret;

}

[Kernel wrapper in-kernel calls]
int rt_bulk_read(void *ptr, size_t len)
{

struct xnbufd bufd;

ssize_t ret;

xnbufd_map_kwrite(&bufd, ptr, len);
ret = rt_bulk_read_inner(&bufd);
xnbufd_unmap_kwrite (&bufd);

ret;

}

[Userland trampoline user syscalls]
int __rt_bulk_read(struct pt_regs *regs)
{

struct xnbufd bufd;

void __user *ptr;

ssize_t ret;

size_t len;

(void __user *)__xn_reg_argl(regs);
__xn_reg_arg2(regs);

ptr
len

xnbufd_map_uwrite(&bufd, ptr, len);
ret = rt_bulk_read_inner(&bufd);
xnbufd_unmap_uwrite (&bufd);

ret;

e Implementing a Xenomai syscall receiving a bulk of data from the caller, which may have to be
read from either kernel or user space:

[Syscall implementation]
ssize_t rt_bulk_write_inner(struct xnbufd *bufd)

{
void *bulk = get_free_bulk(bufd->b_len);
xnbufd_copy_to_kmem(bulk, bufd, bufd->b_len);
}
[Kernel wrapper in-kernel calls]
int rt_bulk _write(const void *ptr, size_t len)
{
struct xnbufd bufd;
ssize_t ret;
xnbufd_map_kread(&bufd, ptr, len);
ret = rt_bulk_write_inner(&bufd);
xnbufd_unmap_kread(&bufd) ;
ret;
}
[Userland trampoline user syscalls]

int __rt_bulk_write(struct pt_regs *regs)

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen



4.3 Buffer descriptors. 15

struct xnbufd bufd;
void __user *ptr;
ssize_t ret;

size_t len;

ptr = (void __user *)__xn_reg_argl(regs);
len = __xn_reg_arg2(regs);

xnbufd_map_uread(&bufd, ptr, len);
ret = rt_bulk_write_inner(&bufd);
xnbufd_unmap_uread(&bufd) ;

ret;

4.3.2 Function Documentation
4.3.2.1 ssize_t xnbufd_copy_from_kmem ( struct xnbufd = bufd, void  from, size_t len )

Copy kernel memory to the area covered by a buffer descriptor.

This routine copies len bytes from the kernel memory starting at from to the area referred to by the
buffer descriptor bufd. xnbufd_copy_from_kmem() tracks the write offset within the destination memory
internally, so that it may be called several times in a loop, until the entire memory area is stored.

The destination address space is dealt with, according to the following rules:

e if bufd refers to a writable kernel area (i.e. see xnbufd_map_kwrite()), the copy is immediatly and
fully performed with no restriction.

o if bufd refers to a writable user area (i.e. see xnbufd_map_uwrite()), the copy is performed only if
that area lives in the currently active address space, and only if the caller may sleep Linux-wise to
process any potential page fault which may arise while writing to that memory.

o if bufd refers to a user area which may not be immediately written to from the current context,
the copy is postponed until xnbufd_unmap_uwrite() is invoked for ubufd, at which point the copy
will take place. In such a case, the source memory is transferred to a carry over buffer allocated
internally; this operation may lead to request dynamic memory from the nucleus heap if len is
greater than 64 bytes.

Parameters
bufd | The address of the buffer descriptor covering the user memory to copy data to.
from | The start address of the kernel memory to copy from.
len | The length of the kernel memory to copy to bufd.
Returns

The number of bytes written so far to the memory area covered by ubufd. Otherwise,

e -ENOMEM is returned when no memory is available from the nucleus heap to allocate the carry
over buffer.

Environments:

This service can be called from:

e Kernel code (including from primary mode) except Xenomai kernel-based task and interrupt ser-
vice routines.

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen



16 Module Documentation

Rescheduling: may switch the caller to secondary mode if a page fault occurs while writing to the user
area. For that reason, xnbufd_copy_from_kmem() may only be called from a preemptible section (Linux-
wise).

Note

Holding the nklock or running real-time interrupts disabled is invalid when calling this routine, and
doing so would trigger a debug assertion.

4.3.2.2 ssize_t xnbufd_copy_to_kmem ( void » to, struct xnbufd % bufd, size_t len )

Copy memory covered by a buffer descriptor to kernel memory.

This routine copies len bytes from the area referred to by the buffer descriptor bufd to the kernel memory
area to. xnbufd_copy_to_kmem() tracks the read offset within the source memory internally, so that it
may be called several times in a loop, until the entire memory area is loaded.

The source address space is dealt with, according to the following rules:

o if bufd refers to readable kernel area (i.e. see xnbufd_map_kread()), the copy is immediately and
fully performed with no restriction.

e if bufd refers to a readable user area (i.e. see xnbufd_map_uread()), the copy is performed only if
that area lives in the currently active address space, and only if the caller may sleep Linux-wise to
process any potential page fault which may arise while reading from that memory.

e any attempt to read from bufd from a non-suitable context is considered as a bug, and will raise a
panic assertion when the nucleus is compiled in debug mode.

Parameters
to | The start address of the kernel memory to copy to.
bufd | The address of the buffer descriptor covering the user memory to copy data from.
len | The length of the user memory to copy from bufd.
Returns

The number of bytes read so far from the memory area covered by ubufd. Otherwise:

e -EINVAL is returned upon attempt to read from the user area from an invalid context. This error is
only returned when the debug mode is disabled; otherwise a panic assertion is raised.
Environments:
This service can be called from:

¢ Kernel code (including from primary mode) except Xenomai kernel-based task and interrupt ser-
vice routines.

Rescheduling: may switch the caller to secondary mode if a page fault occurs while reading from the
user area. For that reason, xnbufd_copy_to_kmem() may only be called from a preemptible section
(Linux-wise).

Note

Holding the nklock or running real-time interrupts disabled is invalid when calling this routine, and
doing so would trigger a debug assertion.

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen



4.3 Buffer descriptors. 17

4.3.2.3 void xnbufd_invalidate ( struct xnbufd * bufd )

Invalidate a buffer descriptor.

The buffer descriptor is invalidated, making it unusable for further copy operations. If an outstanding
carry over buffer was allocated by a previous call to xnbufd_copy_from_kmemy(), it is immediately freed
so that no data transfer will happen when the descriptor is finalized.

The only action that may subsequently be performed on an invalidated descriptor is calling the relevant
unmapping routine for it. For that reason, xnbufd_invalidate() should be invoked on the error path when
data may have been transferred to the carry over buffer.

Parameters

| bufd | The address of the buffer descriptor to invalidate.

Environments:

This service can be called from:

¢ Kernel code (including from primary mode)
e Kernel-based task

e Interrupt service routine

Rescheduling: never.

4.3.2.4 void xnbufd_map_kread ( struct xnbufd = bufd, const void * ptr, size tlen ) [inline], [static]

Initialize a buffer descriptor for reading from kernel memory.

The new buffer descriptor may be used to copy data from kernel memory. This routine should be used
in pair with xnbufd_unmap_kread().

Parameters

bufd | The address of the buffer descriptor which will map a len bytes kernel memory area,
starting from pitr.

ptr | The start of the kernel buffer to map.

len | The length of the kernel buffer starting at ptr.

Environments:

This service can be called from:

¢ Kernel code (including from primary mode)
e Kernel-based task

e Interrupt service routine

Rescheduling: never.

4.3.2.5 void xnbufd_map_kwrite ( struct xnbufd * bufd, void * ptr, size tlen ) [inline], [static]

Initialize a buffer descriptor for writing to kernel memory.

The new buffer descriptor may be used to copy data to kernel memory. This routine should be used in
pair with xnbufd_unmap_kwrite().

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen



18 Module Documentation

Parameters

bufd | The address of the buffer descriptor which will map a len bytes kernel memory area,
starting from pitr.

ptr | The start of the kernel buffer to map.

len | The length of the kernel buffer starting at ptr.

Environments:

This service can be called from:

¢ Kernel code (including from primary mode)
e Kernel-based task

e Interrupt service routine

Rescheduling: never.

4.3.2.6 void xnbufd_map_uread ( struct xnbufd * bufd, const void __user * ptr, size tlen ) [inline], [static]

Initialize a buffer descriptor for reading from user memory.

The new buffer descriptor may be used to copy data from user memory. This routine should be used in
pair with xnbufd_unmap_uread().

Parameters

bufd | The address of the buffer descriptor which will map a len bytes user memory area,
starting from ptr. ptr is never dereferenced directly, since it may refer to a buffer that
lives in another address space.

ptr | The start of the user buffer to map.

len | The length of the user buffer starting at ptr.

Environments:

This service can be called from:

e Kernel code (including from primary mode) except Xenomai kernel-based task and interrupt ser-
vice routines.

Rescheduling: never.

4.3.2.7 void xnbufd_map_uwrite ( struct xnbufd = bufd, void __user = ptr, size.tlen ) [inline], [static]

Initialize a buffer descriptor for writing to user memory.

The new buffer descriptor may be used to copy data to user memory. This routine should be used in pair
with xnbufd_unmap_uwrite().

Parameters

bufd | The address of the buffer descriptor which will map a len bytes user memory area,
starting from ptr. ptris never dereferenced directly, since it may refer to a buffer that
lives in another address space.

ptr | The start of the user buffer to map.

len | The length of the user buffer starting at ptr.

Environments:

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen



4.3 Buffer descriptors. 19

This service can be called from:

e Kernel code (including from primary mode) except Xenomai kernel-based task and interrupt ser-
vice routines.

Rescheduling: never.

4.3.2.8 void xnbufd_reset ( struct xnbufd = bufd ) [inline], [static]

Reset a buffer descriptor.

The buffer descriptor is reset, so that all data already copied is forgotten. Any carry over buffer allocated
is kept, though.

Parameters

| bufd | The address of the buffer descriptor to reset.

Environments:

This service can be called from:

¢ Kernel code (including from primary mode)
e Kernel-based task

e Interrupt service routine

Rescheduling: never.

4.3.2.9 ssize_t xnbufd_unmap_kread ( struct xnbufd * bufd )

Finalize a buffer descriptor obtained from xnbufd_map_kread().

This routine finalizes a buffer descriptor previously initialized by a call to xnbufd_map_kread(), to read
data from a kernel area.

Parameters

| bufd | The address of the buffer descriptor to finalize.

Returns

The number of bytes read so far from the memory area covered by ubufd.

Environments:

This service can be called from:

e Kernel code (including from primary mode)
o Kernel-based task

e Interrupt service routine

Rescheduling: never.

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen



20 Module Documentation

4.3.2.10 ssize_t xnbufd_unmap_kwrite ( struct xnbufd = bufd )

Finalize a buffer descriptor obtained from xnbufd_map_kwrite().

This routine finalizes a buffer descriptor previously initialized by a call to xnbufd_map_kwrite(), to write
data to a kernel area.

Parameters

| bufd | The address of the buffer descriptor to finalize.

Returns

The number of bytes written so far to the memory area covered by ubufd.

Environments:

This service can be called from:

e Kernel code (including from primary mode)
e Kernel-based task

e Interrupt service routine

Rescheduling: never.

43211 ssize_t xnbufd_unmap_uread ( struct xnbufd * bufd )

Finalize a buffer descriptor obtained from xnbufd_map_uread().

This routine finalizes a buffer descriptor previously initialized by a call to xnbufd_map_uread(), to read
data from a user area.

Parameters

| bufd | The address of the buffer descriptor to finalize.

Returns

The number of bytes read so far from the memory area covered by ubufd.

Environments:

This service can be called from:

e Kernel code (including from primary mode) except Xenomai kernel-based task and interrupt ser-
vice routines.

Rescheduling: never.

Note

Holding the nklock or running real-time interrupts disabled is invalid when calling this routine, and
doing so would trigger a debug assertion.

4.3.2.12 ssize_t xnbufd_unmap_uwrite ( struct xnbufd * bufd )

Finalize a buffer descriptor obtained from xnbufd_map_uwrite().

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen



4.3 Buffer descriptors. 21

This routine finalizes a buffer descriptor previously initialized by a call to xnbufd_map_uwrite(), to write
data to a user area.

The main action taken is to write the contents of the kernel memory area passed to xnbufd_copy_from_kmem()
whenever the copy operation was postponed at that time; the carry over buffer is eventually released

as needed. If xnbufd_copy_from_kmem() was allowed to copy to the destination user memory at once,

then xnbufd_unmap_uwrite() leads to a no-op.

Parameters
| bufd | The address of the buffer descriptor to finalize.

Returns

The number of bytes written so far to the memory area covered by ubufd.

Environments:

This service can be called from:

e Kernel code (including from primary mode) except Xenomai kernel-based task and interrupt ser-
vice routines.

Rescheduling: never.

Note

Holding the nklock or running real-time interrupts disabled is invalid when calling this routine, and
doing so would trigger a debug assertion.

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen



22 Module Documentation

4.4 Dynamic memory allocation services.

Collaboration diagram for Dynamic memory allocation services.:

Dynamic memory allocation

Xenomai nucleus. |a——— .
services.

Files

o file heap.c
Dynamic memory allocation services.

Functions

e int xnheap_init (xnheap_t +heap, void =heapaddr, u_long heapsize, u_long pagesize)
Initialize a memory heap.
¢ void xnheap_set_label (xnheap_t *heap, const char +label,...)
Set the heap’s label string.
¢ void xnheap_destroy (xnheap_t =heap, void(+flushfn)(xnheap_t *heap, void *extaddr, u_long ext-
size, void =cookie), void =cookie)
Destroys a memory heap.
¢ void * xnheap_alloc (xnheap_t +heap, u_long size)
Allocate a memory block from a memory heap.
¢ int xnheap_test_and_free (xnheap_t *heap, void =block, int(xckfn)(void =block))
Test and release a memory block to a memory heap.
¢ int xnheap_free (xnheap_t *heap, void =block)
Release a memory block to a memory heap.
e int xnheap_extend (xnheap_t xheap, void »extaddr, u_long extsize)
Extend a memory heap.
¢ void xnheap_schedule_free (xnheap_t +heap, void =block, xnholder_t =link)
Schedule a memory block for release.

4.41 Detailed Description

Dynamic memory allocation services.

The implementation of the memory allocator follows the algorithm described in a USENIX 1988 pa-
per called "Design of a General Purpose Memory Allocator for the 4.3BSD Unix Kernel" by Mar-
shall K. McKusick and Michael J. Karels. You can find it at various locations on the net, including
http://docs.FreeBSD.org/44doc/papers/kernmalloc.pdf. A minor variation allows this implementa-
tion to have ’extendable’ heaps when needed, with multiple memory extents providing autonomous page
address spaces.

The data structures hierarchy is as follows:

HEAP {
block_buckets[]
extent_queue ------- +
} |
)
EXTENT #1 {

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen


$group__nucleus.html
http://docs.FreeBSD.org/44doc/papers/kernmalloc.pdf

4.4 Dynamic memory allocation services. 23

{static header}
page_map[npages]
page_array[npages] [pagesize]

} -+
|
|
\'
EXTENT #n {
{static header}
page_map [npages]

page_array[npages] [pagesize]

4.4.2 Function Documentation
4.42.1 void+ xnheap_alloc ( xnheap_t * heap, u_long size )

Allocate a memory block from a memory heap.

Allocates a contiguous region of memory from an active memory heap. Such allocation is guaranteed
to be time-bounded.

Parameters

heap | The descriptor address of the heap to get memory from.

size | The size in bytes of the requested block. Sizes lower or equal to the page size are
rounded either to the minimum allocation size if lower than this value, or to the min-
imum alignment size if greater or equal to this value. In the current implementation,
with MINALLOC = 8 and MINALIGN = 16, a 7 bytes request will be rounded to 8
bytes, and a 17 bytes request will be rounded to 32.

Returns

The address of the allocated region upon success, or NULL if no memory is available from the
specified heap.

Environments:

This service can be called from:

¢ Kernel module initialization/cleanup code
e Interrupt service routine
e Kernel-based task

e User-space task

Rescheduling: never.

Referenced by xnshadow_map().

4.4.2.2 void xnheap_destroy ( xnheap_t » heap, void(+)(xnheap_t +heap, void +extaddr, u_long extsize, void *cookie) flushfn,
void * cookie )

Destroys a memory heap.

Destroys a memory heap.

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen



24 Module Documentation

Parameters

heap | The descriptor address of the destroyed heap.

flushfn | If non-NULL, the address of a flush routine which will be called for each extent at-
tached to the heap. This routine can be used by the calling code to further release
the heap memory.

cookie | If flushfn is non-NULL, cookie is an opaque pointer which will be passed unmodified
to flushfn.

Environments:

This service can be called from:

e Kernel module initialization/cleanup code
e Kernel-based task

e User-space task
Rescheduling: never.
Referenced by xnpod_init(), and xnpod_shutdown().
4.4.2.3 int xnheap_extend ( xnheap_t = heap, void * extaddr, u_long extsize )

Extend a memory heap.

Add a new extent to an existing memory heap.

Parameters

heap | The descriptor address of the heap to add an extent to.

extaddr | The address of the extent memory.

extsize | The size of the extent memory (in bytes). In the current implementation, this size
must match the one of the initial extent passed to xnheap_init().

Returns

0 is returned upon success, or -EINVAL is returned if extsize differs from the initial extent’s size.

Environments:

This service can be called from:

¢ Kernel module initialization/cleanup code
e Interrupt service routine
e Kernel-based task

e User-space task

Rescheduling: never.

4.4.2.4 int xnheap_free ( xnheap_t + heap, void * block )

Release a memory block to a memory heap.

Releases a memory region to the memory heap it was previously allocated from.

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen



4.4 Dynamic memory allocation services. 25

Parameters

heap | The descriptor address of the heap to release memory to.

block | The address of the region to be returned to the heap.

Returns

0 is returned upon success, or one of the following error codes:
e -EFAULT is returned whenever the memory address is outside the heap address space.
e -EINVAL is returned whenever the memory address does not represent a valid block.

Environments:

This service can be called from:

¢ Kernel module initialization/cleanup code
e Interrupt service routine
e Kernel-based task

e User-space task

Rescheduling: never.

References xnheap_test_and_free().

4.4.2.5 int xnheap_init ( xnheap_t + heap, void = heapaddr, u_long heapsize, u_long pagesize )

Initialize a memory heap.

Initializes a memory heap suitable for time-bounded allocation requests of dynamic memory.

Parameters

heap | The address of a heap descriptor which will be used to store the allocation data. This
descriptor must always be valid while the heap is active therefore it must be allocated
in permanent memory.

heapaddr | The address of the heap storage area. All allocations will be made from the given
area in time-bounded mode. Since additional extents can be added to a heap, this
parameter is also known as the "initial extent".

heapsize | The size in bytes of the initial extent pointed at by heapaddr. heapsize must be a
multiple of pagesize and lower than 16 Mbytes. heapsize must be large enough to
contain a dynamically-sized internal header. The following formula gives the size of
this header:

H = heapsize, P=pagesize, M=sizeof(struct pagemap), E=sizeof(xnextent_t)
hdrsize = (H-E) « M)/ (M + 1)

This value is then aligned on the next 16-byte boundary. The routine xnheap_overhead() computes the
corrected heap size according to the previous formula.

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen



26 Module Documentation

Parameters

pagesize | The size in bytes of the fundamental memory page which will be used to subdi-
vide the heap internally. Choosing the right page size is important regarding perfor-
mance and memory fragmentation issues, so it might be a good idea to take a look
at http://docs.FreeBSD.org/44doc/papers/kernmalloc.pdf to pick the best one
for your needs. In the current implementation, pagesize must be a power of two in
the range [ 8 .. 32768 ] inclusive.

Returns

0 is returned upon success, or one of the following error codes:
e -EINVAL is returned whenever a parameter is invalid.

Environments:

This service can be called from:

¢ Kernel module initialization/cleanup code
¢ Kernel-based task

e User-space task

Rescheduling: never.

Referenced by xnpod_init().

4.4.2.6 void xnheap_schedule_free ( xnheap_t = heap, void * block, xnholder_t * link )

Schedule a memory block for release.

This routine records a block for later release by xnheap_finalize_free(). This service is useful to lazily
free blocks of heap memory when immediate release is not an option, e.g. when active references
are still pending on the object for a short time after the call. xnheap_finalize_free() is expected to be
eventually called by the client code at some point in the future when actually freeing the idle objects is
deemed safe.

Parameters

heap | The descriptor address of the heap to release memory to.

block | The address of the region to be returned to the heap.

link | The address of a link member, likely but not necessarily within the released object,
which will be used by the heap manager to hold the block in the queue of idle objects.

Environments:

This service can be called from:
e Kernel module initialization/cleanup code
e Interrupt service routine
e Kernel-based task

e User-space task

Rescheduling: never.

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen


http://docs.FreeBSD.org/44doc/papers/kernmalloc.pdf

4.4 Dynamic memory allocation services. 27

4.4.2.7 void xnheap_set_label ( xnheap_t = heap, const char  label, ... )

Set the heap’s label string.

Set the heap label that will be used in statistic outputs.

Parameters

heap | The address of a heap descriptor.

label | Label string displayed in statistic outputs. This parameter can be a format string, in
which case succeeding parameters will be used to resolve the final label.

Environments:

This service can be called from:

e Kernel module initialization/cleanup code
e Kernel-based task

e User-space task

Rescheduling: never.

Referenced by xnpod_init().

4.4.2.8 int xnheap_test_and_free ( xnheap_t  heap, void = block, int(+)(void xblock) ckfn )

Test and release a memory block to a memory heap.

Releases a memory region to the memory heap it was previously allocated from. Before the actual
release is performed, an optional user-defined can be invoked to check for additional criteria with respect
to the request consistency.

Parameters

heap | The descriptor address of the heap to release memory to.

block | The address of the region to be returned to the heap.

ckfn | The address of a user-supplied verification routine which is to be called after the
memory address specified by block has been checked for validity. The routine is
expected to proceed to further consistency checks, and either return zero upon suc-
cess, or non-zero upon error. In the latter case, the release process is aborted, and
ckfn’s return value is passed back to the caller of this service as its error return code.
ckfn must not trigger the rescheduling procedure either directly or indirectly.

Returns

0 is returned upon success, or -EINVAL is returned whenever the block is not a valid region of the
specified heap. Additional return codes can also be defined locally by the ckfn routine.

Environments:

This service can be called from:

e Kernel module initialization/cleanup code
e Interrupt service routine
o Kernel-based task

e User-space task

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen



28 Module Documentation

Rescheduling: never.

Referenced by xnheap_free().

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen



4.5 Interrupt management. 29

4.5 Interrupt management.

Collaboration diagram for Interrupt management.:

Xenomai nucleus. «——— Interrupt management.

Files

e file intr.c

Interrupt management.

Functions

e int xnintr_init (xnintr_t =intr, const char *name, unsigned irq, xnisr_t isr, xniack_t iack, xnflags_t
flags)
Initialize an interrupt object.
e int xnintr_destroy (xnintr_t =intr)

Destroy an interrupt object.

e int xnintr_attach (xnintr_t =intr, void *cookie)
Attach an interrupt object.

e int xnintr_detach (xnintr_t =intr)

Detach an interrupt object.
e int xnintr_enable (xnintr_t «intr)

Enable an interrupt object.
e int xnintr_disable (xnintr_t =intr)

Disable an interrupt object.
e void xnintr_affinity (xnintr_t intr, xnarch_cpumask_t cpumask)

Set interrupt’s processor affinity.
4.5.1 Detailed Description

Interrupt management.

4.5.2 Function Documentation
4.5.2.1 void xnintr_affinity ( xnintr_t = infr, xnarch_cpumask_t cpumask )

Set interrupt’s processor affinity.

Causes the IRQ associated with the interrupt object intr to be received only on processors which bits
are set in cpoumask.

Parameters

intr | The descriptor address of the interrupt object which affinity is to be changed.

cpumask | The new processor affinity of the interrupt object.

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen


$group__nucleus.html

30 Module Documentation

Returns

the previous cpumask on success, or an empty mask on failure.

Note

Depending on architectures, setting more than one bit in cpumask could be meaningless.

4.5.2.2 int xnintr_attach ( xnintr_t = intr, void = cookie )

Attach an interrupt object.

Attach an interrupt object previously initialized by xnintr_init(). After this operation is completed, all IRQs
received from the corresponding interrupt channel are directed to the object’s ISR.

Parameters

intr | The descriptor address of the interrupt object to attach.

cookie | A user-defined opaque value which is stored into the interrupt object descriptor for
further retrieval by the ISR/ISR handlers.

Returns

0 is returned on success. Otherwise:
e -EINVAL is returned if a low-level error occurred while attaching the interrupt.

e -EBUSY is returned if the interrupt object was already attached.

Note

The caller must not hold nklock when invoking this service, this would cause deadlocks.

Environments:

This service can be called from:

e Kernel module initialization/cleanup code

e Kernel-based task

Rescheduling: never.

Note

Attaching an interrupt resets the tracked number of receipts to zero.

4.5.2.3 int xnintr_destroy ( xnintr_t = intr )

Destroy an interrupt object.

Destroys an interrupt object previously initialized by xnintr_init(). The interrupt object is automatically
detached by a call to xnintr_detach(). No more IRQs will be dispatched by this object after this service
has returned.

Parameters

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen



4.5 Interrupt management. 31

| intr | The descriptor address of the interrupt object to destroy.

Returns

0 is returned on success. Otherwise, -EINVAL is returned if an error occurred while detaching the
interrupt (see xnintr_detach()).

Environments:

This service can be called from:

e Kernel module initialization/cleanup code

e Kernel-based task

Rescheduling: never.

References xnintr_detach().

4524 int xnintr_detach ( xnintr_t * intr )

Detach an interrupt object.

Detach an interrupt object previously attached by xnintr_attach(). After this operation is completed, no
more IRQs are directed to the object’s ISR, but the interrupt object itself remains valid. A detached
interrupt object can be attached again by a subsequent call to xnintr_attach().

Parameters

| intr | The descriptor address of the interrupt object to detach.

Returns

0 is returned on success. Otherwise:

e -EINVAL is returned if a low-level error occurred while detaching the interrupt, or if the interrupt
object was not attached. In both cases, no action is performed.

Note

The caller must not hold nklock when invoking this service, this would cause deadlocks.

Environments:

This service can be called from:

e Kernel module initialization/cleanup code

e Kernel-based task

Rescheduling: never.

Referenced by xnintr_destroy().

4,5.2.5 int xnintr_disable ( xnintr_t * intr )

Disable an interrupt object.

Disables the hardware interrupt line associated with an interrupt object. This operation invalidates further
interrupt requests from the given source until the IRQ line is re-enabled anew.

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen



32 Module Documentation

Parameters

| intr | The descriptor address of the interrupt object to disable.

Returns

0 is returned on success. Otherwise, -EINVAL is returned if a low-level error occurred while disabling
the interrupt.

Environments:

This service can be called from:

e Kernel module initialization/cleanup code

e Kernel-based task

Rescheduling: never.

4.5.2.6 int xnintr_enable ( xnintr_t x intr )

Enable an interrupt object.

Enables the hardware interrupt line associated with an interrupt object. Over real-time control layers
which mask and acknowledge IRQs, this operation is necessary to revalidate the interrupt channel so
that more interrupts can be notified.

Parameters

| intr | The descriptor address of the interrupt object to enable.

Returns
0 is returned on success. Otherwise, -EINVAL is returned if a low-level error occurred while enabling
the interrupt.

Environments:

This service can be called from:

e Kernel module initialization/cleanup code

e Kernel-based task

Rescheduling: never.

4,5.2.7 int xnintr_init ( xnintr_t = intr, const char + name, unsigned irq, xnisr_t isr, xniack_t iack, xnflags_t flags )

Initialize an interrupt object.
Associates an interrupt object with an IRQ line.

When an interrupt occurs on the given irq line, the ISR is fired in order to deal with the hardware event.
The interrupt service code may call any non-suspensive service from the nucleus.

Upon receipt of an IRQ, the ISR is immediately called on behalf of the interrupted stack context, the
rescheduling procedure is locked, and the interrupt source is masked at hardware level. The status
value returned by the ISR is then checked for the following values:

e XN_ISR_HANDLED indicates that the interrupt request has been fulfilled by the ISR.

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen



4.5 Interrupt management. 33

e XN_ISR_NONE indicates the opposite to XN_ISR_HANDLED. The ISR must always return this
value when it determines that the interrupt request has not been issued by the dedicated hardware
device.

In addition, one of the following bits may be set by the ISR :

NOTE: use these bits with care and only when you do understand their effect on the system. The ISR is
not encouraged to use these bits in case it shares the IRQ line with other ISRs in the real-time domain.

e XN_ISR_NOENABLE causes the nucleus to ask the real-time control layer not to re-enable the
IRQ line (read the following section). xnarch_end_irq() must be called to re-enable the IRQ line
later.

e XN_ISR_PROPAGATE tells the nucleus to require the real-time control layer to forward the IRQ.
For instance, this would cause the Adeos control layer to propagate the interrupt down the interrupt
pipeline to other Adeos domains, such as Linux. This is the regular way to share interrupts between
the nucleus and the host system. In effect, XN_ISR_PROPAGATE implies XN_ISR_NOENABLE
since it would make no sense to re-enable the interrupt channel before the next domain down the
pipeline has had a chance to process the propagated interrupt.

The nucleus re-enables the IRQ line by default. Over some real-time control layers which mask and
acknowledge IRQs, this operation is necessary to revalidate the interrupt channel so that more interrupts
can be notified.

A count of interrupt receipts is tracked into the interrupt descriptor, and reset to zero each time the
interrupt object is attached. Since this count could wrap around, it should be used as an indication of
interrupt activity only.

Parameters

intr | The address of a interrupt object descriptor the nucleus will use to store the object-
specific data. This descriptor must always be valid while the object is active therefore
it must be allocated in permanent memory.

name | An ASCII string standing for the symbolic name of the interrupt object or NULL
("<unknown>" will be applied then).

irg | The hardware interrupt channel associated with the interrupt object. This value is
architecture-dependent. An interrupt object must then be attached to the hardware
interrupt vector using the xnintr_attach() service for the associated IRQs to be di-
rected to this object.

isr | The address of a valid low-level interrupt service routine if this parameter is non-zero.
This handler will be called each time the corresponding IRQ is delivered on behalf of
an interrupt context. When called, the ISR is passed the descriptor address of the
interrupt object.

iack | The address of an optional interrupt acknowledge routine, aimed at replacing the
default one. Only very specific situations actually require to override the default set-
ting for this parameter, like having to acknowledge non-standard PIC hardware. iack
should return a non-zero value to indicate that the interrupt has been properly ac-
knowledged. If iack is NULL, the default routine will be used instead.

flags | A set of creation flags affecting the operation. The valid flags are:

e XN_ISR_SHARED enables IRQ-sharing with other interrupt objects.

e XN_ISR_EDGE is an additional flag need to be set together with XN_ISR_SHARED to enable
IRQ-sharing of edge-triggered interrupts.

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen



34 Module Documentation

Returns

0 is returned on success. Otherwise, -EINVAL is returned if irqg is not a valid interrupt number.

Environments:

This service can be called from:

¢ Kernel module initialization/cleanup code

e Kernel-based task

Rescheduling: never.

Referenced by xnpod_enable_timesource().

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen



4.6 Lightweight key-to-object mapping service 35

4.6 Lightweight key-to-object mapping service

Collaboration diagram for Lightweight key-to-object mapping service:

Lightweight key-to

Xenomai nucleus. |€—— : . :
-object mapping service

Files

e file map.h
e file map.c

Functions

e xnmap_t =+ xnmap_create (int nkeys, int reserve, int offset)

Create a map.
¢ void xnmap_delete (xnmap_t *map)

Delete a map.

e int xnmap_enter (xnmap_t *map, int key, void =objaddr)
Index an object into a map.

e int xnmap_remove (xnmap_t *map, int key)

Remove an object reference from a map.
e static void » xnmap_fetch_nocheck (xnmap_t =map, int key)

Search an object into a map - unchecked form.
e static void » xnmap_fetch (xnmap_t *map, int key)

Search an object into a map.

4.6.1 Detailed Description

A map is a simple indexing structure which associates unique integer keys with pointers to objects. The
current implementation supports reservation, for naming/indexing the real-time objects skins create,
either on a fixed, user-provided integer (i.e. a reserved key value), or by drawing the next available key
internally if the caller did not specify any fixed key. For instance, in some given map, the key space
ranging from 0 to 255 could be reserved for fixed keys, whilst the range from 256 to 511 could be
available for drawing free keys dynamically.

A maximum of 1024 unique keys per map is supported on 32bit machines.

(This implementation should not be confused with C++ STL maps, which are dynamically expandable
and allow arbitrary key types; Xenomai maps don’t).

4.6.2 Function Documentation

4.6.2.1 xnmap_t x xnmap_create ( int nkeys, int reserve, int offset )

Create a map.

Allocates a new map with the specified addressing capabilities. The memory is obtained from the Xeno-
mai system heap.

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen


$group__nucleus.html

36 Module Documentation

Parameters

nkeys | The maximum number of unique keys the map will be able to hold. This value cannot
exceed the static limit represented by XNMAP_MAX_KEYS, and must be a power of
two.

reserve | The number of keys which should be kept for reservation within the index space.
Reserving a key means to specify a valid key to the xnmap_enter() service, which
will then attempt to register this exact key, instead of drawing the next available key
from the unreserved index space. When reservation is in effect, the unreserved index
space will hold key values greater than reserve, keeping the low key values for the
reserved space. For instance, passing reserve = 32 would cause the index range [ 0
.. 31 ] to be kept for reserved keys. When non-zero, reserve is rounded to the next
multiple of BITS_PER_LONG. If reserve is zero no reservation will be available from
the map.

offset | The lowest key value xnmap_enter() will return to the caller. Key values will be in the
range [ 0 + offset .. nkeys + offset - 1 ]. Negative offsets are valid.

Returns

the address of the new map is returned on success; otherwise, NULL is returned if nkeys is invalid.

Environments:

This service can be called from:

e Kernel module initialization/cleanup code
e Kernel-based task

e User-space task

Rescheduling: never.

4.6.2.2 void xnmap_delete ( xnmap_t x map )

Delete a map.

Deletes a map, freeing any associated memory back to the Xenomai system heap.

Parameters

| map | The address of the map to delete.

Environments:

This service can be called from:

¢ Kernel module initialization/cleanup code
¢ Kernel-based task

e User-space task

Rescheduling: never.

4.6.2.3 int xnmap_enter ( xnmap_t * map, int key, void * objaddr )

Index an object into a map.

Insert a new object into the given map.

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen



4.6 Lightweight key-to-object mapping service 37

Parameters

map | The address of the map to insert into.

key | The key to index the object on. If this key is within the valid index range [ 0 - offset ..
nkeys - offset - 1], then an attempt to reserve this exact key is made. If key has an
out-of-range value lower or equal to O - offset - 1, then an attempt is made to draw a
free key from the unreserved index space.

objaddr | The address of the object to index on the key. This value will be returned by a
successful call to xnmap_fetch() with the same key.

Returns

a valid key is returned on success, either key if reserved, or the next free key. Otherwise:
e -EEXIST is returned upon attempt to reserve a busy key.
e -ENOSPC when no more free key is available.

Environments:

This service can be called from:

¢ Kernel module initialization/cleanup code
e Interrupt service routine
e Kernel-based task

e User-space task

Rescheduling: never.

4.6.2.4 void xnmap_fetch ( xnmap_t * map, intkey ) [inline], [static]

Search an object into a map.

Retrieve an object reference from the given map by its index key.

Parameters

map | The address of the map to retrieve from.

key | The key to be searched for in the map index.

Returns

The indexed object address is returned on success, otherwise NULL is returned when key is invalid
or no object is currently indexed on it.

Environments:

This service can be called from:

e Kernel module initialization/cleanup code
e Interrupt service routine
o Kernel-based task

e User-space task

Rescheduling: never.

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen



38

Module Documentation

4.6.2.5 void xnmap_fetch_nocheck ( xnmap_t * map, intkey ) [inline], [static]

Search an object into a map - unchecked form.

Retrieve an object reference from the given map by its index key, but does not perform any sanity check
on the provided key.

Parameters

map

The address of the map to retrieve from.

key

The key to be searched for in the map index.

Returns

The indexed object address is returned on success, otherwise NULL is returned when no object is
currently indexed on key.

Environments:

This service can be called from:

¢ Kernel module initialization/cleanup code

e Interrupt service routine

e Kernel-based task

e User-space task

Rescheduling: never.

4.6.2.6 int xnmap_remove ( xnmap_t = map, int key )

Remove an object reference from a map.

Removes an object reference from the given map, releasing the associated key.

Parameters

map

The address of the map to remove from.

key

The key the object reference to be removed is indexed on.

Returns

0 is returned on success. Otherwise:

e -ESRCH is returned if key is invalid.

Environments:

This service can be called from:

¢ Kernel module initialization/cleanup code

e Interrupt service routine

e Kernel-based task

e User-space task

Rescheduling: never.

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen




4.7 Xenomai nucleus. 39

4.7 Xenomai nucleus.

Collaboration diagram for Xenomai nucleus.:

Registry services.

Interrupt management.

Thread synchronization
services.

Buffer descriptors.

Real-time pod services.

Lightweight key-to
-object mapping service

Time base services.

Xenomai nucleus.

Dynamic memory allocation
services.

File descriptors events
multiplexing services.

Thread state flags.

Real-time shadow services.

Virtual file services

Timer services.

Thread information
flags.

Modules

e Thread state flags.
Bits reporting permanent or transient states of thread.
e Thread information flags.

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen


$group__registry.html
$group__intr.html
$group__synch.html
$group__bufd.html
$group__pod.html
$group__map.html
$group__timebase.html
$group__heap.html
$group__select.html
$group__nucleus__state__flags.html
$group__shadow.html
$group__vfile.html
$group__timer.html
$group__nucleus__info__flags.html

40

Module Documentation

4.7.1

Bits reporting events notified to the thread.
Buffer descriptors.
Dynamic memory allocation services.
Interrupt management.
Lightweight key-to-object mapping service
Real-time pod services.
Registry services.

File descriptors events multiplexing services.

Real-time shadow services.
Thread synchronization services.
Time base services.

Timer services.

Virtual file services

Detailed Description

An abstract RTOS core.

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen



4.8 Real-time pod services. 41

4.8 Real-time pod services.

Collaboration diagram for Real-time pod services.:

Xenomai nucleus. («@¢—— Real-time pod services.

Files

e file pod.h

Real-time pod interface header.
e file pod.c

Real-time pod services.

Data Structures

e struct xnpod
Real-time pod descriptor.

Functions

e int xnpod_init (void)
Initialize the core pod.
¢ int xnpod_enable_timesource (void)
Activate the core time source.
¢ void xnpod_disable_timesource (void)
Stop the core time source.
¢ void xnpod_shutdown (int xtype)
Shutdown the current pod.
¢ int xnpod_init_thread (struct xnthread sthread, const struct xnthread_init_attr »attr, struct xnsched-
_class =sched_class, const union xnsched_policy_param xsched_param)
Initialize a new thread.
e int xnpod_start_thread (xnthread_t sthread, const struct xnthread_start_attr attr)
Initial start of a newly created thread.
¢ void xnpod_stop_thread (xnthread_t sthread)
Stop a thread.
¢ void xnpod_restart_thread (xnthread_t «thread)
Restart a thread.
¢ void xnpod_delete_thread (xnthread_t »thread)
Delete a thread.
¢ void xnpod_abort_thread (xnthread_t «thread)
Abort a thread.
e xnflags_t xnpod_set_thread_mode (xnthread_t «thread, xnflags_t clrmask, xnflags_t setmask)
Change a thread'’s control mode.
e void xnpod_suspend_thread (xnthread_t sthread, xnflags_t mask, xnticks_t timeout, xntmode_t
timeout_mode, struct xnsynch =wchan)
Suspend a thread.
e void xnpod_resume_thread (xnthread_t sthread, xnflags_t mask)

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen


$group__nucleus.html

42

Module Documentation

4.8.1

Resume a thread.
int xnpod_unblock_thread (xnthread_t =thread)

Unblock a thread.
int xnpod_set_thread_schedparam (struct xnthread =thread, struct xnsched_class *sched_class,
const union xnsched_policy_param =sched_param)

Change the base scheduling parameters of a thread.
int xnpod_migrate_thread (int cpu)

Migrate the current thread.
void xnpod_dispatch_signals (void)

Deliver pending asynchronous signals to the running thread.
static void xnpod_schedule (void)

Rescheduling procedure entry point.
int xnpod_set_thread_periodic (xnthread_t =thread, xnticks_t idate, xnticks_t period)

Make a thread periodic.
int xnpod_wait_thread_period (unsigned long *overruns_r)

Wait for the next periodic release point.
int xnpod_set_thread_tslice (struct xnthread sthread, xnticks_t quantum)

Set thread time-slicing information.

int xnpod_add_hook (int type, void(routine)(xnthread_t *))
Install a nucleus hook.

int xnpod_remove_hook (int type, void(xroutine)(xnthread_t *))

Remove a nucleus hook.
void xnpod_welcome_thread (xnthread_t =thread, int imask)

Thread prologue.
int xnpod_trap_fault (xnarch_fltinfo_t fltinfo)

Default fault handler.

Detailed Description

Real-time pod services.

4.8.2 Function Documentation

4.8.2.1

void xnpod_abort_thread ( xnthread_t = thread )

Abort a thread.

Unconditionally terminates a thread and releases all the nucleus resources it currently holds, regardless
of whether the target thread is currently active in kernel or user-space. xnpod_abort_thread() should be
reserved for use by skin cleanup routines; xnpod_delete_thread() should be preferred as the common
method for removing threads from a running system.

Parameters

thread | The descriptor address of the terminated thread.

This service forces a call to xnpod_delete_thread() for the target thread.

Environments:

This service can be called from:

¢ Kernel module initialization/cleanup code

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen



4.8 Real-time pod services. 43

e Kernel-based task

e User-space task

Rescheduling: possible if the current thread self-deletes.
References XNABORT, XNDORMANT, xnpod_delete_thread(), and xnpod_suspend_thread().

4.8.2.2 int xnpod_add_hook ( int type, void(+)(xnthread_t *) routine )

Install a nucleus hook.

The nucleus allows to register user-defined routines which get called whenever a specific scheduling
event occurs. Multiple hooks can be chained for a single event type, and get called on a FIFO basis.

The scheduling is locked while a hook is executing.

Parameters

type | Defines the kind of hook to install:

- XNHOOK_THREAD_START: The user-defined routine will be
called on behalf of the starter thread whenever a new thread
starts. The descriptor address of the started thread is
passed to the routine.

- XNHOOK_THREAD_DELETE: The user-defined routine will be
called on behalf of the deletor thread whenever a thread is
deleted. The descriptor address of the deleted thread is
passed to the routine.

- XNHOOK_THREAD_SWITCH: The user-defined routine will be
called on behalf of the resuming thread whenever a context
switch takes place. The descriptor address of the thread
which has been switched out is passed to the routine.

routine | The address of the user-supplied routine to call.

Returns

0 is returned on success. Otherwise, one of the following error codes indicates the cause of the
failure:

- -EINVAL is returned if type is incorrect.

- -ENOMEM is returned if not enough memory is available
from the system heap to add the new hook.

Environments:

This service can be called from:

e Kernel module initialization/cleanup code
o Kernel-based task

e User-space task

Rescheduling: never.

4.8.2.3 void xnpod_delete_thread ( xnthread_t  thread )

Delete a thread.

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen



44 Module Documentation

Terminates a thread and releases all the nucleus resources it currently holds. A thread exists in the
system since xnpod_init_thread() has been called to create it, so this service must be called in order to
destroy it afterwards.

Parameters

| thread | The descriptor address of the terminated thread.

The target thread’s resources may not be immediately removed if this is an active shadow thread running
in user-space. In such a case, the mated Linux task is sent a termination signal instead, and the actual
deletion is deferred until the task exit event is called.

The DELETE hooks are called on behalf of the calling context (if any). The information stored in the
thread control block remains valid until all hooks have been called.

Self-terminating a thread is allowed. In such a case, this service does not return to the caller.
Environments:

This service can be called from:

¢ Kernel module initialization/cleanup code
e Kernel-based task

e User-space task

Rescheduling: possible if the current thread self-deletes.

References xnsched::curr, xnsched::Iflags, xnsched::status, XNABORT, XNCANPND, XNDEFCAN, X-
NMIGRATE, XNPEND, xnpod_schedule(), xnpod_unblock_thread(), XNREADY, XNROOT, xnselector-
_destroy(), xnsynch_forget_sleeper(), xnsynch_release_all_ownerships(), xntimer_destroy(), and XNZ-
OMBIE.

Referenced by xnpod_abort_thread(), and xnpod_shutdown().

4.8.2.4 void xnpod_disable_timesource ( void )

Stop the core time source.
Releases the hardware timer, and deactivates the master time base.
Environments:

This service can be called from:

e Kernel module initialization/cleanup code

e User-space task in secondary mode

Rescheduling: never.
References xntimer_freeze().

Referenced by xnpod_shutdown().

4.8.2.5 void xnpod_dispatch_signals ( void )

Deliver pending asynchronous signals to the running thread.

This internal routine checks for the presence of asynchronous signals directed to the running thread, and
attempts to start the asynchronous service routine (ASR) if any. Called with nklock locked, interrupts off.

References XNASDI.

Referenced by xnpod_welcome_thread(), and xnshadow_harden().

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen



4.8 Real-time pod services. 45

4.8.2.6 int xnpod_enable_timesource ( void )

Activate the core time source.

Xenomai implements the notion of time base, by which software timers that belong to different skins may
be clocked separately according to distinct frequencies, or aperiodically. In the periodic case, delays and
timeouts are given in counts of ticks; the duration of a tick is specified by the time base. In the aperiodic
case, timings are directly specified in nanoseconds.

Only a single aperiodic (i.e. tick-less) time base may exist in the system, and the nucleus provides for
it through the nktbase object. All skins depending on aperiodic timings should bind to the latter, also
known as the master time base. Skins depending on periodic timings may create and bind to their own
time base. Such a periodic time base is managed as a slave object of the master one. A cascading
software timer, which is fired by the master time base according to the appropriate frequency, triggers in
turn the update process of the associated slave time base, which eventually fires the elapsed software
timers controlled by the latter.

Xenomai always controls the underlying hardware timer in a tick-less fashion, also known as the oneshot
mode. The xnpod_enable_timesource() service configures the timer chip as needed, and activates the
master time base.

Returns

0 is returned on success. Otherwise:
e -ENODEV is returned if a failure occurred while configuring the hardware timer.
e -ENOSYS is returned if no active pod exists.

Side-effect: A host timing service is started in order to relay the canonical periodical tick to the underlying
architecture, regardless of the frequency used for Xenomai’s system tick. This routine does not call the
rescheduling procedure.

Environments:

This service can be called from:

¢ Kernel module initialization/cleanup code

e User-space task in secondary mode

Rescheduling: never.

Note
Built-in support for periodic timing depends on CONFIG_XENO_OPT_TIMING_PERIODIC.

References xnsched::htimer, xnintr_init(), and xntimer_start().

Referenced by xnpod_init().

4.8.2.7 int xnpod_init ( void )

Initialize the core pod.

Initializes the core interface pod which can subsequently be used to start real-time activities. Once the
core pod is active, real-time skins can be stacked over. There can only be a single core pod active
in the host environment. Such environment can be confined to a process (e.g. simulator), or expand
machine-wide (e.g. I-pipe).

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen



46 Module Documentation

Returns

0 is returned on success. Otherwise:
e -ENOMEM is returned if the memory manager fails to initialize.

Environments:

This service can be called from:
e Kernel module initialization code

References xnpod:refcnt, xnsched::rootcb, xnpod::sched, xnpod::status, xnpod:tdeleteq, xnpod-
threadq, xnpod::timerlck, xnpod::tsliced, xnpod::islicer, xnpod::tstartq, xnpod::tswitchq, xnheap_-
destroy(), xnheap_init(), xnheap_set label(), xnpod_enable_timesource(), xnpod_shutdown(), and
xntimer_init().

4.8.2.8 int xnpod_init_thread ( struct xnthread » thread, const struct xnthread_init_attr = attr, struct xnsched_class *
sched_class, const union xnsched_policy_param * sched_param )

Initialize a new thread.

Initializes a new thread attached to the active pod. The thread is left in an innocuous state until it is
actually started by xnpod_start_thread().

Parameters

thread | The address of a thread descriptor the nucleus will use to store the thread-specific
data. This descriptor must always be valid while the thread is active therefore it must
be allocated in permanent memory.

Warning

Some architectures may require the descriptor to be properly aligned in memory; this is an additional
reason for descriptors not to be laid in the program stack where alignement constraints might not
always be satisfied.

Parameters

attr | A pointer to an attribute block describing the initial properties of the new thread.
Members of this structure are defined as follows:

e name: An ASCII string standing for the symbolic name of the thread. This name is copied to a
safe place into the thread descriptor. This name might be used in various situations by the nucleus
for issuing human-readable diagnostic messages, so it is usually a good idea to provide a sensible
value here. The simulator even uses this name intensively to identify threads in the debugging GUI
it provides. However, passing NULL here is always legal and means "anonymous".

e tbase: The time base descriptor to refer to for all timed operations issued by the new thread. See
xntbase_alloc() for detailed explanations about time bases.

e flags: A set of creation flags affecting the operation. The following flags can be part of this bitmask,
each of them affecting the nucleus behaviour regarding the created thread:

— XNSUSP creates the thread in a suspended state. In such a case, the thread will have to
be explicitly resumed using the xnpod_resume_thread() service for its execution to actually
begin, additionally to issuing xnpod_start_thread() for it. This flag can also be specified when
invoking xnpod_start_thread() as a starting mode.

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen



4.8 Real-ti

me pod services. 47

XNFPU (enable FPU) tells the nucleus that the new thread will use the floating-point unit. In
such a case, the nucleus will handle the FPU context save/restore ops upon thread switches at
the expense of a few additional cycles per context switch. By default, a thread is not expected
to use the FPU. This flag is simply ignored when the nucleus runs on behalf of a userspace-
based real-time control layer since the FPU management is always active if present.

¢ stacksize: The size of the stack (in bytes) for the new thread. If zero is passed, the nucleus will
use a reasonable pre-defined size depending on the underlying real-time control layer.

e Ops:
from

Parameters

A pointer to a structure defining the class-level operations available for this thread. Fields
this structure must have been set appropriately by the caller.

sched_class | The initial scheduling class the new thread should be assigned to.

sched_param | The initial scheduling parameters to set for the new thread; sched param must be

valid within the context of sched class.

Returns

0 is returned on success. Otherwise, one of the following error codes indicates the cause of the

failure

- -EINVAL is returned if @a attr->flags has invalid bits set.

- -ENOMEM is returned if not enough memory is available
from the system heap to create the new thread’s stack.

Side-effect: This routine does not call the rescheduling procedure.

Environme

nts:

This service can be called from:

¢ Kernel module initialization/cleanup code

e Kernel-based task

e User-space task

Reschedul

ing: never.

References XNDORMANT, XNFPU, xnpod_suspend_thread(), XNSHADOW, and XNSUSP.

4829 intx

npod_migrate_thread ( int cpu )

Migrate the current thread.

This call m

Parameters

akes the current thread migrate to another CPU if its affinity allows it.

cpu | The destination CPU.

Return values

0 | if the thread could migrate ;

-EPERM | if the calling context is asynchronous, or the current thread affinity forbids this

migration ;

-EBUSY | if the scheduler is locked.

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen




48 Module Documentation

References xnpod_schedule().

4.8.2.10 int xnpod_remove_hook ( int type, void(+)(xnthread_t %) routine )

Remove a nucleus hook.

This service removes a nucleus hook previously registered using xnpod_add_hook().

Parameters

type | Defines the kind of hook to remove among XNHOOK_THREAD_START, XNHOOK-
_THREAD_ DELETE and XNHOOK_THREAD_SWITCH.

routine | The address of the user-supplied routine to remove.

Returns

0 is returned on success. Otherwise, -EINVAL is returned if type is incorrect or if the routine has
never been registered before.

Environments:

This service can be called from:

e Kernel module initialization/cleanup code
e Kernel-based task

e User-space task

Rescheduling: never.

4.8.2.11 void xnpod_restart_thread ( xnthread_t = thread )

Restart a thread.

Restarts a previously started thread. The thread is first terminated then respawned using the same
information that prevailed when it was first started, including the mode bits and interrupt mask initially
passed to the xnpod_start_thread() service. As a consequence of this call, the thread entry point is
rerun.

Parameters

thread | The descriptor address of the affected thread which must have been previously
started by the xnpod_start_thread() service.

Self-restarting a thread is allowed. However, restarting the root thread is not. Restarting a thread which
was never started once leads to a null-effect.

Environments:

This service can be called from:

¢ Kernel module initialization/cleanup code

e Kernel-based task

Rescheduling: possible.
References xnpod_schedule(), XNRESTART, XNROOT, XNSHADOW, and XNSTARTED.

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen



4.8 Real-time pod services. 49

4.8.2.12 void xnpod_resume_thread ( xnthread_t = thread, xnflags_t mask )

Resume a thread.

Resumes the execution of a thread previously suspended by one or more calls to xnpod_suspend_thread().
This call removes a suspensive condition affecting the target thread. When all suspensive conditions
are gone, the thread is left in a READY state at which point it becomes eligible anew for scheduling.

Parameters

thread | The descriptor address of the resumed thread.
mask | The suspension mask specifying the suspensive condition to remove from the
thread’s wait mask. Possible values usable by the caller are:

e XNSUSP. This flag removes the explicit suspension condition. This condition might be additive to
the XNPEND condition.

o XNDELAY. This flag removes the counted delay wait condition.

e XNPEND. This flag removes the resource wait condition. If a watchdog is armed, it is automatically
disarmed by this call. Unlike the two previous conditions, only the current thread can set this
condition for itself, i.e. no thread can force another one to pend on a resource.

When the thread is eventually resumed by one or more calls to xnpod_resume_thread(), the caller of
xnpod_suspend_thread() in the awakened thread that suspended itself should check for the following
bits in its own information mask to determine what caused its wake up:

e XNRMID means that the caller must assume that the pended synchronization object has been
destroyed (see xnsynch_flush()).

e XNTIMEO means that the delay elapsed, or the watchdog went off before the corresponding syn-
chronization object was signaled.

e XNBREAK means that the wait has been forcibly broken by a call to xnpod_unblock_thread().

Environments:

This service can be called from:

e Kernel module initialization/cleanup code
e Interrupt service routine
o Kernel-based task

e User-space task

Rescheduling: never.

References xnsched::curr, XNDELAY, XNHELD, XNPEND, XNREADY, xnsynch_forget_sleeper(), and
xntimer_stop().

Referenced by xnpod_start_thread(), xnpod_unblock_thread(), xnsynch_flush(), xnsynch_wakeup_one-
_sleeper(), and xnsynch_wakeup_this_sleeper().

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen



50 Module Documentation

4.8.2.13 void xnpod_schedule ( void ) [inline], [static]

Rescheduling procedure entry point.

This is the central rescheduling routine which should be called to validate and apply changes which
have previously been made to the nucleus scheduling state, such as suspending, resuming or changing
the priority of threads. This call first determines if a thread switch should take place, and performs it as
needed. xnpod_schedule() schedules out the current thread if:

e the current thread is now blocked or deleted.
e arunnable thread from a higher priority scheduling class is waiting for the CPU.

e the current thread does not lead the runnable threads from its own scheduling class (e.g. round-
robin in the RT class).

The nucleus implements a lazy rescheduling scheme so that most of the services affecting the threads
state MUST be followed by a call to the rescheduling procedure for the new scheduling state to be
applied. In other words, multiple changes on the scheduler state can be done in a row, waking threads
up, blocking others, without being immediately translated into the corresponding context switches, like it
would be necessary would it appear that a higher priority thread than the current one became runnable
for instance. When all changes have been applied, the rescheduling procedure is then called to consider
those changes, and possibly replace the current thread by another one.

As a notable exception to the previous principle however, every action which ends up suspending or
deleting the current thread begets an immediate call to the rescheduling procedure on behalf of the
service causing the state transition. For instance, self-suspension, self-destruction, or sleeping on a
synchronization object automatically leads to a call to the rescheduling procedure, therefore the caller
does not need to explicitly issue xnpod_schedule() after such operations.

The rescheduling procedure always leads to a null-effect if it is called on behalf of an ISR or callout. Any
outstanding scheduler lock held by the outgoing thread will be restored when the thread is scheduled
back in.

Calling this procedure with no applicable context switch pending is harmless and simply leads to a
null-effect.

Side-effects:

e |f an asynchronous service routine exists, the pending asynchronous signals are delivered to a
resuming thread or on behalf of the caller before it returns from the procedure if no context switch
has taken place. This behaviour can be disabled by setting the XNASDI flag in the thread’s status
mask by calling xnpod_set_thread_mode().

Environments:

This service can be called from:

Kernel module initialization/cleanup code

Interrupt service routine, although this leads to a no-op.

Kernel-based task

User-space task

Note

The switch hooks are called on behalf of the resuming thread.

References xnsched::lflags, and xnsched::status.

Referenced by xnpod_delete_thread(), xnpod_migrate_thread(), xnpod_restart_thread(), xnpod_-
shutdown(), xnpod_start_thread(), xnpod_stop_thread(), xnpod_suspend_thread(), xnregistry_enter(),
xnregistry_put(), xnselect_bind(), and xnselect_destroy().

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen



4.8 Real-time pod services. 51

4.8.2.14 xnflags_t xnpod_set_thread_mode ( xnthread_t = thread, xnflags_t clrmask, xnflags_t setmask )

Change a thread’s control mode.

Change the control mode of a given thread. The control mode affects the behaviour of the nucleus
regarding the specified thread.

Parameters

thread | The descriptor address of the affected thread.

clrmask | Clears the corresponding bits from the control field before setmask is applied. The
scheduler lock held by the current thread can be forcibly released by passing the
XNLOCK bit in this mask. In this case, the lock nesting count is also reset to zero.

setmask | The new thread mode. The following flags can be part of this bitmask, each of them
affecting the nucleus behaviour regarding the thread:

e XNLOCK causes the thread to lock the scheduler. The target thread will have to call the xnpod_-
unlock_sched() service to unlock the scheduler or clear the XNLOCK bit forcibly using this service.
A non-preemptible thread may still block, in which case, the lock is reasserted when the thread is
scheduled back in.

e XNASDI disables the asynchronous signal handling for this thread. See xnpod_schedule() for
more on this.

e XNRPIOFF disables thread priority coupling between Xenomai and Linux schedulers. This bit
prevents the root Linux thread from inheriting the priority of the running shadow Xenomai thread.
Use CONFIG_XENO_OPT_RPIOFF to globally disable priority coupling.

Environments:

This service can be called from:

e Kernel-based task

e User-space task in primary mode.

Rescheduling: never, therefore, the caller should reschedule if XNLOCK has been passed into clrmask.
References XNLOCK.

4.8.2.15 int xnpod_set_thread_periodic ( xnthread_t = thread, xnticks_t idate, xnticks_t period )

Make a thread periodic.

Make a thread periodic by programming its first release point and its period in the processor time line.
Subsequent calls to xnpod_wait_thread_period() will delay the thread until the next periodic release point
in the processor timeline is reached.

Parameters

thread | The descriptor address of the affected thread. This thread is immediately delayed
until the first periodic release point is reached.

idate | The initial (absolute) date of the first release point, expressed in clock ticks (see
note). The affected thread will be delayed until this point is reached. If idate is equal
to XN_INFINITE, the current system date is used, and no initial delay takes place.
period | The period of the thread, expressed in clock ticks (see note). As a side-effect, passing
XN_INFINITE attempts to stop the thread’s periodic timer; in the latter case, the
routine always exits succesfully, regardless of the previous state of this timer.

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen




52 Module Documentation

Returns

0 is returned upon success. Otherwise:
e -ETIMEDOUT is returned idate is different from XN_INFINITE and represents a date in the past.

e -EWOULDBLOCK is returned if the relevant time base has not been initialized by a call to xnpod-
_init_timebase().

e -EINVAL is returned if period is different from XN_INFINITE but shorter than the scheduling latency
value for the target system, as available from /proc/xenomai/latency.

Environments:

This service can be called from:

e Kernel module initialization/cleanup code
e Kernel-based task

e User-space task
Rescheduling: possible if the operation affects the current thread and idate has not elapsed yet.

Note

The idate and period values will be interpreted as jiffies if thread is bound to a periodic time base
(see xnpod_init_thread), or nanoseconds otherwise.

References XNDELAY, xnpod_suspend_thread(), xntimer_start(), and xntimer_stop().

4.8.2.16 int xnpod_set_thread_schedparam ( struct xnthread  thread, struct xnsched_class = sched_class, const union
xnsched_policy_param * sched_param )

Change the base scheduling parameters of a thread.

Changes the base scheduling policy and paramaters of a thread. If the thread is currently blocked,
waiting in priority-pending mode (XNSYNCH_PRIO) for a synchronization object to be signaled, the
nucleus will attempt to reorder the object’s wait queue so that it reflects the new sleeper’s priority, unless
the XNSYNCH_DREORD flag has been set for the pended object.

Parameters

thread | The descriptor address of the affected thread.

sched_class | The new scheduling class the thread should be assigned to.

sched_param | The scheduling parameters to set for the thread; sched_param must be valid within
the context of sched_class.

It is absolutely required to use this service to change a thread priority, in order to have all the needed
housekeeping chores correctly performed. i.e. Do not call xnsched_set_policy() directly or worse,
change the thread.cprio field by hand in any case.

Returns

0 is returned on success. Otherwise, a negative error code indicates the cause of a failure that
happened in the scheduling class implementation for sched_class. Invalid parameters passed into
sched_param are common causes of error.

Side-effects:

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen



4.8 Real-time pod services. 53

e This service does not call the rescheduling procedure but may affect the state of the runnable
queue for the previous and new scheduling classes.

¢ Assigning the same scheduling class and parameters to a running or ready thread moves it to the
end of the runnable queue, thus causing a manual round-robin.

e [f the thread is a user-space shadow, this call propagates the request to the mated Linux task.

Environments:

This service can be called from:

¢ Kernel module initialization/cleanup code
e Interrupt service routine
e Kernel-based task

e User-space task

Rescheduling: never.

4.8.2.17 int xnpod_set_thread_tslice ( struct xnthread = thread, xnticks_t quantum )

Set thread time-slicing information.

Update the time-slicing information for a given thread. This service enables or disables round-robin
scheduling for the thread, depending on the value of quantum. By default, times-slicing is disabled for a
new thread initialized by a call to xnpod_init_thread().

Parameters

thread | The descriptor address of the affected thread.

guantum | The time quantum assigned to the thread expressed in time-slicing ticks (see note).
If quantum is different from XN_INFINITE, the time-slice for the thread is set to that
value and its current time credit is refilled (i.e. the thread is given a full time-slice
to run next). Otherwise, if quantum equals XN_INFINITE, time-slicing is stopped for
that thread.

Returns

0 is returned upon success. Otherwise:
e -EINVAL is returned if the base scheduling class of the target thread does not support time-slicing.

Environments:

This service can be called from:

e Kernel module initialization/cleanup code
e Kernel-based task

e User-space task

Rescheduling: never.

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen



54 Module Documentation

Note

If thread is bound to a periodic timebase, quantum represents the number of periodic ticks in that
timebase. Otherwise, if thread is bound to the master time base, a full time-slice will last: quantum
* CONFIG_XENO_OPT_TIMING_VIRTICK.

References XNRRB, xntimer_start(), and xntimer_stop().

4.8.2.18 void xnpod_shutdown ( int xtype )

Shutdown the current pod.

Forcibly shutdowns the active pod. All existing nucleus threads (but the root one) are terminated, and
the system heap is freed.

Parameters

xtype | An exit code passed to the host environment who started the nucleus. Zero is always
interpreted as a successful return.

The nucleus never calls this routine directly. Skins should provide their own shutdown handlers which
end up calling xnpod_shutdown() after their own housekeeping chores have been carried out.

Environments:

This service can be called from:
¢ Kernel module initialization/cleanup code

Rescheduling: never.

References xnheap_destroy(), xnpod_delete_thread(), xnpod_disable_timesource(), xnpod_schedule(),
XNROOT, and xntimer_destroy().

Referenced by xnpod_init().

4.8.2.19 int xnpod_start_thread ( xnthread_t = thread, const struct xnthread_start_attr » atir )

Initial start of a newly created thread.

Starts a (newly) created thread, scheduling it for the first time. This call releases the target thread from
the XNDORMANT state. This service also sets the initial mode and interrupt mask for the new thread.

Parameters

thread | The descriptor address of the affected thread which must have been previously ini-
tialized by the xnpod_init_thread() service.

attr | A pointer to an attribute block describing the execution properties of the new thread.
Members of this structure are defined as follows:

e mode: The initial thread mode. The following flags can be part of this bitmask, each of them
affecting the nucleus behaviour regarding the started thread:

— XNLOCK causes the thread to lock the scheduler when it starts. The target thread will have
to call the xnpod_unlock_sched() service to unlock the scheduler. A non-preemptible thread
may still block, in which case, the lock is reasserted when the thread is scheduled back in.

— XNASDI disables the asynchronous signal handling for this thread. See xnpod_schedule() for
more on this.

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen



4.8 Real-time pod services. 55

— XNSUSP makes the thread start in a suspended state. In such a case, the thread will have
to be explicitly resumed using the xnpod_resume_thread() service for its execution to actually
begin.

e imask: The interrupt mask that should be asserted when the thread starts. The processor interrupt
state will be set to the given value when the thread starts running. The interpretation of this value
might be different across real-time layers, but a non-zero value should always mark an interrupt
masking in effect (e.g. local_irq_disable()). Conversely, a zero value should always mark a fully
preemptible state regarding interrupts (e.g. local_irq_enable()).

e affinity: The processor affinity of this thread. Passing XNPOD_ALL_CPUS or an empty affinity set
means "any cpu".

e entry: The address of the thread’s body routine. In other words, it is the thread entry point.

e cookie: A user-defined opaque cookie the nucleus will pass to the emerging thread as the sole
argument of its entry point.

The START hooks are called on behalf of the calling context (if any).

Return values

0 | if thread could be started ;

-EBUSY | if thread was not dormant or stopped ;

-EINVAL | if the value of attr->affinity is invalid.

Environments:

This service can be called from:

e Kernel module initialization/cleanup code
e Kernel-based task

e User-space task

Rescheduling: possible.

References XNDORMANT, xnpod_resume_thread(), xnpod_schedule(), XNREADY, XNSHADOW, XN-
STARTED, and XNSUSP.

Referenced by xnshadow_map().

4.8.2.20 void xnpod_stop_thread ( xnthread_t » thread )

Stop a thread.

Stop a previously started thread. The thread is put back into the dormant state; however, it is not deleted
from the system.

Parameters

thread | The descriptor address of the affected thread which must have been previously
started by the xnpod_start_thread() service.

Environments:

This service can be called from:

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen



56

Module Documentation

e Kernel module initialization/cleanup code

e Kernel-based task

e User-space task

Rescheduling: possible.
References XNDORMANT, xnpod_schedule(), xnpod_suspend_thread(), and XNROOT.

4.8.2.21 void xnpod_suspend_thread ( xnthread_t * thread, xnflags_t mask, xnticks_t timeout, xntmode_t timeout_mode, struct
xnsynch * wchan )

Suspend a thread.

Suspends the execution of a thread according to a given suspensive condition. This thread will not be
eligible for scheduling until it all the pending suspensive conditions set by this service are removed by
one or more calls to xnpod_resume_thread().

Parameters

thread

The descriptor address of the suspended thread.

mask

The suspension mask specifying the suspensive condition to add to the thread’s wait
mask. Possible values usable by the caller are:

e XNSUSP. This flag forcibly suspends a thread, regardless of any resource to wait for. A reverse
call to xnpod_resume_thread() specifying the XNSUSP bit must be issued to remove this condition,
which is cumulative with other suspension bits.wchan should be NULL when using this suspending

mode.

e XNDELAY. This flags denotes a counted delay wait (in ticks) which duration is defined by the value
of the timeout parameter.

e XNPEND. This flag denotes a wait for a synchronization object to be signaled. The wchan argu-
ment must points to this object. A timeout value can be passed to bound the wait. This suspending
mode should not be used directly by the client interface, but rather through the xnsynch_sleep_on()

call.

Parameters

timeout

The timeout which may be used to limit the time the thread pends on a resource.
This value is a wait time given in ticks (see note). It can either be relative, absolute
monotonic, or absolute adjustable depending on timeout_mode. Passing XN_INFI-
NITE and setting timeout_mode to XN_RELATIVE specifies an unbounded wait. All
other values are used to initialize a watchdog timer. If the current operation mode
of the system timer is oneshot and timeout elapses before xnpod_suspend_thread()
has completed, then the target thread will not be suspended, and this routine leads
to a null effect.

timeout_mode

The mode of the timeout parameter. It can either be set to XN_RELATIVE, XN_AB-
SOLUTE, or XN_REALTIME (see also xntimer_start()).

wchan

The address of a pended resource. This parameter is used internally by the synchro-
nization object implementation code to specify on which object the suspended thread
pends. NULL is a legitimate value when this parameter does not apply to the current
suspending mode (e.g. XNSUSP).

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen




4.8 Real-time pod services. 57

Note

If the target thread is a shadow which has received a Linux-originated signal, then this service im-
mediately exits without suspending the thread, but raises the XNBREAK condition in its information
mask.

Environments:

This service can be called from:

e Kernel module initialization/cleanup code

Interrupt service routine

Kernel-based task

User-space task

Rescheduling: possible if the current thread suspends itself.

Note

The timeout value will be interpreted as jiffies if thread is bound to a periodic time base (see xnpod-
_init_thread), or nanoseconds otherwise.

References xnsched::curr, xnsched::Iflags, XNBREAK, XNDELAY, XNDORMANT, XNHELD, XNKICKE-
D, xnpod_schedule(), XNREADY, XNRELAX, XNRMID, XNROBBED, XNROOT, XNSHADOW, XNSUSP,
xnsynch_forget_sleeper(), XNTIMEO, xntimer_start(), and XNWAKEN.

Referenced by xnpod_abort_thread(), xnpod_init_thread(), xnpod_set_thread_periodic(), xnpod_-
stop_thread(), xnpod_trap_fault(), xnpod_wait_thread_period(), xnshadow_map(), xnshadow_relax(),
xnsynch_acquire(), and xnsynch_sleep_on().

4.8.2.22 void xnpod_trap_fault ( xnarch_fltinfo_t = fitinfo )

Default fault handler.

This is the default handler which is called whenever an uncontrolled exception or fault is caught. If the
fault is caught on behalf of a real-time thread, the fault is not propagated to the host system. Otherwise,
the fault is unhandled by the nucleus and simply propagated.

Parameters

fltinfo | An opaque pointer to the arch-specific buffer describing the fault. The actual layout
is defined by the xnarch_fltinfo_t type in each arch-dependent layer file.

References xnpod_suspend_thread(), xnshadow_relax(), and XNSUSP.

4.8.2.23 int xnpod_unblock_thread ( xnthread_t » thread )

Unblock a thread.

Breaks the thread out of any wait it is currently in. This call removes the XNDELAY and XNPEND
suspensive conditions previously put by xnpod_suspend_thread() on the target thread. If all suspensive
conditions are gone, the thread is left in a READY state at which point it becomes eligible anew for
scheduling.

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen



58 Module Documentation

Parameters

| thread | The descriptor address of the unblocked thread.

This call neither releases the thread from the XNSUSP, XNRELAX, XNDORMANT or XNHELD suspen-
sive conditions.

When the thread resumes execution, the XNBREAK bit is set in the unblocked thread’s information
mask. Unblocking a non-blocked thread is perfectly harmless.
Returns

non-zero is returned if the thread was actually unblocked from a pending wait state, 0 otherwise.

Environments:

This service can be called from:

Kernel module initialization/cleanup code

Interrupt service routine

e Kernel-based task

User-space task

Rescheduling: never.
References XNBREAK, XNDELAY, XNPEND, and xnpod_resume_thread().
Referenced by xnpod_delete_thread().

4.8.2.24 int xnpod_wait_thread_period ( unsigned long * overruns_r )

Wait for the next periodic release point.

Make the current thread wait for the next periodic release point in the processor time line.

Parameters

overruns_r | If non-NULL, overruns_r must be a pointer to a memory location which will be
written with the count of pending overruns. This value is copied only when
xnpod_wait_thread period() returns -ETIMEDOUT or success; the memory location
remains unmodified otherwise. If NULL, this count will never be copied back.

Returns

0 is returned upon success; if overruns_r is valid, zero is copied to the pointed memory location.
Otherwise:

e -EWOULDBLOCK is returned if xnpod_set_thread_periodic() has not previously been called for
the calling thread.

e -EINTR is returned if xnpod_unblock_thread() has been called for the waiting thread before the
next periodic release point has been reached. In this case, the overrun counter is reset too.

e -ETIMEDOUT is returned if the timer has overrun, which indicates that one or more previous
release points have been missed by the calling thread. If overruns_ris valid, the count of pending
overruns is copied to the pointed memory location.

Environments:

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen



4.8 Real-time pod services. 59

This service can be called from:

¢ Kernel module initialization/cleanup code
e Kernel-based task

e User-space task

Rescheduling: always, unless the current release point has already been reached. In the latter case,
the current thread immediately returns from this service without being delayed.

References XNBREAK, XNDELAY, xnpod_suspend_thread(), and xntimer_get_overruns().

4.8.2.25 void xnpod_welcome_thread ( xnthread_t = thread, int imask )

Thread prologue.

This internal routine is called on behalf of a (re)starting thread’s prologue before the user entry point is
invoked. This call is reserved for internal housekeeping chores and cannot be inlined.

Entered with nklock locked, irgs off.
References XNLOCK, xnpod_dispatch_signals(), and XNRESTART.

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen



60 Module Documentation

4.9 Registry services.

Collaboration diagram for Registry services.:

Xenomai nucleus. [«—— Registry services.

Files

e file registry.h

This file is part of the Xenomai project.
o file registry.c

This file is part of the Xenomai project.

Functions

e int xnregistry_enter (const char xkey, void xobjaddr, xnhandle_t =phandle, struct xnpnode =pnode)

Register a real-time object.
e int xnregistry_bind (const char =key, xnticks_t timeout, int timeout_mode, xnhandle_t +phandle)

Bind to a real-time object.
e int xnregistry_remove (xnhandle_t handle)

Forcibly unregister a real-time object.
e int xnregistry_remove_safe (xnhandle_t handle, xnticks_t timeout)

Unregister an idle real-time object.
e void * xnregistry_get (xnhandle_t handle)

Find and lock a real-time object into the registry.
e U_long xnregistry_put (xnhandle_t handle)

Unlock a real-time object from the registry.
¢ void = xnregistry_fetch (xnhandle_t handle)

Find a real-time object into the registry.

4.9.1 Detailed Description

The registry provides a mean to index real-time object descriptors created by Xenomai skins on unique
alphanumeric keys. When labeled this way, a real-time object is globally exported; it can be searched for,
and its descriptor returned to the caller for further use; the latter operation is called a "binding". When no
object has been registered under the given name yet, the registry can be asked to set up a rendez-vous,
blocking the caller until the object is eventually registered.

4.9.2 Function Documentation

4.9.2.1 int xnregistry_bind ( const char * key, xnticks_t timeout, int timeout_mode, xnhandle_t = phandle )

Bind to a real-time object.

This service retrieves the registry handle of a given object identified by its key. Unless otherwise spec-
ified, this service will block the caller if the object is not registered yet, waiting for such registration to
occur.

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen


$group__nucleus.html

4.9 Registry services. 61

Parameters

key

A valid NULL-terminated string which identifies the object to bind to.

timeout

The timeout which may be used to limit the time the thread wait for the object to
be registered. This value is a wait time given in ticks (see note). It can either be
relative, absolute monotonic (XN_ABSOLUTE), or absolute adjustable (XN_REALTI-
ME) depending on timeout_mode. Passing XN_INFINITE and setting timeout_mode
to XN_RELATIVE specifies an unbounded wait. Passing XN_NONBLOCK causes
the service to return immediately without waiting if the object is not registered on
entry. All other values are used as a wait limit.

timeout_mode

The mode of the timeout parameter. It can either be set to XN_RELATIVE, XN_AB-
SOLUTE, or XN_REALTIME (see also xntimer_start()).

phandle

A pointer to a memory location which will be written upon success with the generic
handle defined by the registry for the retrieved object. Contents of this memory is
undefined upon failure.

Returns

0 is returned upon success. Otherwise:

e -EINVAL is returned if key is NULL.

e -EINTR is returned if xnpod_unblock_thread() has been called for the waiting thread before the
retrieval has completed.

e -EWOULDBLOCK is returned if timeout is equal to XN_NONBLOCK and the searched object is
not registered on entry. As a special exception, this error is also returned if this service should
block, but was called from a context which cannot sleep (e.g. interrupt, non-realtime or scheduler

locked).

e -ETIMEDOUT is returned if the object cannot be retrieved within the specified amount of time.

Environments:

This service can be called from:

¢ Kernel module initialization/cleanup code

e Interrupt service routine only if timeout is equal to XN_NONBLOCK.

e Kernel-based thread.

Rescheduling: always unless the request is immediately satisfied or timeout specifies a non-blocking

operation.

Note

The timeout value will be interpreted as jiffies if thread is bound to a periodic time base (see xnpod-
_init_thread), or nanoseconds otherwise.

References XNBREAK, xnsynch_sleep_on(), xntbase_get_time(), and XNTIMEO.

4.9.2.2 int xnregistry_enter ( const char * key, void * objaddr, xnhandle_t » phandle, struct xnpnode * pnode )

Register a real-time object.

This service allocates a new registry slot for an associated object, and indexes it by an alphanumeric
key for later retrieval.

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen




62 Module Documentation

Parameters

key | A valid NULL-terminated string by which the object will be indexed and later retrieved
in the registry. Since it is assumed that such key is stored into the registered object,
it will not be copied but only kept by reference in the registry. Pass an empty string if
the object shall only occupy a registry slot for handle-based lookups.

objaddr | An opaque pointer to the object to index by key.

phandle | A pointer to a generic handle defined by the registry which will uniquely identify the
indexed object, until the latter is unregistered using the xnregistry_remove() service.

pnode | A pointer to an optional /proc node class descriptor. This structure provides the infor-
mation needed to export all objects from the given class through the /proc filesystem,
under the /proc/xenomai/registry entry. Passing NULL indicates that no /proc support
is available for the newly registered object.

Returns

0 is returned upon success. Otherwise:
e -EINVAL is returned if objaddr are NULL, or if key constains an invalid '/’ character.

¢ -ENOMEM is returned if the system fails to get enough dynamic memory from the global real-time
heap in order to register the object.

e -EEXIST is returned if the key is already in use.

Environments:

This service can be called from:

e Kernel module initialization/cleanup code

e Kernel-based thread

Rescheduling: possible.

References xnpod_schedule(), and xnsynch_init().

4.9.2.3 void+ xnregistry_fetch ( xnhandle_t handle )

Find a real-time object into the registry.

This service retrieves an object from its handle into the registry and returns the memory address of its
descriptor.

Parameters

handle | The generic handle of the object to fetch. If XNOBJECT_SELF is passed, the object
is the calling Xenomai thread.

Returns

The memory address of the object’s descriptor is returned on success. Otherwise, NULL is returned
if handle does not reference a registered object, or if handle is equal to XNOBJECT_SELF but the
current context is not a real-time thread.

Environments:

This service can be called from:

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen



4.9 Registry services. 63

e Kernel module initialization/cleanup code

e Interrupt service routine only if handle is different from XNOBJECT_SELF.
¢ Kernel-based thread

Rescheduling: never.

4.9.2.4 void+ xnregistry_get ( xnhandle_t handle )

Find and lock a real-time object into the registry.

This service retrieves an object from its handle into the registry and prevents it removal atomically. A
locking count is tracked, so that xnregistry_get() and xnregistry_put() must be used in pair.

Parameters

handle | The generic handle of the object to find and lock. If XNOBJECT_SELF is passed,
the object is the calling Xenomai thread.

Returns

The memory address of the object’s descriptor is returned on success. Otherwise, NULL is returned
if handle does not reference a registered object, or if handle is equal to XNOBJECT_SELF but the
current context is not a real-time thread.

Environments:

This service can be called from:

e Kernel module initialization/cleanup code

e Interrupt service routine only if handle is different from XNOBJECT_SELF.
e Kernel-based thread.

Rescheduling: never.

4.9.2.5 u_long xnregistry_put ( xnhandle_t handle )

Unlock a real-time object from the registry.

This service decrements the lock count of a registered object previously locked by a call to
xnregistry_get(). The object is actually unlocked from the registry when the locking count falls down to
zero, thus waking up any thread currently blocked on xnregistry_remove() for unregistering it.

Parameters

handle | The generic handle of the object to unlock. If XNOBJECT_SELF is passed, the object
is the calling Xenomai thread.

Returns

The decremented lock count is returned upon success. Zero is also returned if handle does not
reference a registered object, or if handle is equal to XNOBJECT_SELF but the current context is
not a real-time thread.

Environments:

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen



64 Module Documentation

This service can be called from:

¢ Kernel module initialization/cleanup code

e Interrupt service routine only if handle is different from XNOBJECT_SELF.
¢ Kernel-based thread

Rescheduling: possible if the lock count falls down to zero and some thread is currently waiting for the
object to be unlocked.

References xnpod_schedule(), and xnsynch_flush().

4.9.2.6 int xnregistry_remove ( xnhandle_t handle )

Forcibly unregister a real-time object.

This service forcibly removes an object from the registry. The removal is performed regardless of the
current object’s locking status.

Parameters

handle | The generic handle of the object to remove.

Returns

0 is returned upon success. Otherwise:
e -ESRCH is returned if handle does not reference a registered object.

Environments:

This service can be called from:

¢ Kernel module initialization/cleanup code

e Kernel-based thread

Rescheduling: never.

Referenced by xnregistry _remove_safe().

4.9.2.7 int xnregistry_remove_safe ( xnhandle_t handle, xnticks_t timeout )

Unregister an idle real-time object.

This service removes an object from the registry. The caller might sleep as a result of waiting for the
target object to be unlocked prior to the removal (see xnregistry_put()).

Parameters

handle | The generic handle of the object to remove.

timeout | If the object is locked on entry, param gives the number of clock ticks to wait for
the unlocking to occur (see note). Passing XN_INFINITE causes the caller to block
indefinitely until the object is unlocked. Passing XN_NONBLOCK causes the service
to return immediately without waiting if the object is locked on entry.

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen



4.9 Registry services. 65

Returns

0 is returned upon success. Otherwise:
e -ESRCH is returned if handle does not reference a registered object.

e -EWOULDBLOCK is returned if timeout is equal to XN_NONBLOCK and the object is locked on
entry.

e -EBUSY is returned if handle refers to a locked object and the caller could not sleep until it is
unlocked.

e -ETIMEDOUT is returned if the object cannot be removed within the specified amount of time.

e -EINTR is returned if xnpod_unblock_thread() has been called for the calling thread waiting for the
object to be unlocked.

Environments:

This service can be called from:

¢ Kernel module initialization/cleanup code

e Interrupt service routine only if timeout is equal to XN_NONBLOCK.
e Kernel-based thread.

Rescheduling: possible if the object to remove is currently locked and the calling context can sleep.

Note

The timeout value will be interpreted as jiffies if the current thread is bound to a periodic time base
(see xnpod_init_thread), or nanoseconds otherwise.

References XNBREAK, xnregistry_remove(), xnsynch_sleep_on(), and XNTIMEO.

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen



66

Module Documentation

4.10 File descriptors events multiplexing services.

Collaboration diagram for File descriptors events multiplexing services.:

Files

File descriptors events

Xenomai nucleus. |«——] . : .
multiplexing services.

file select.h

file descriptors events multiplexing header.
file select.c

file descriptors events multiplexing.

Functions

4.10.1

void xnselect_init (struct xnselect =select_block)
Initialize a struct xnselect structure.
int xnselect_bind (struct xnselect select_block, struct xnselect_binding =binding, struct xnselector
+selector, unsigned type, unsigned index, unsigned state)
Bind a file descriptor (represented by its xnselect structure) to a selector block.
void xnselect_destroy (struct xnselect =select_block)
Destroy the xnselect structure associated with a file descriptor.
int xnselector_init (struct xnselector *selector)
Initialize a selector structure.
int xnselect (struct xnselector =selector, fd_set xout_fds[XNSELECT_MAX_TYPES], fd_set =in_-
fds[XNSELECT_MAX_TYPES], int nfds, xnticks_t timeout, xntmode_t timeout_mode)
Check the state of a number of file descriptors, wait for a state change if no descriptor is ready.
void xnselector_destroy (struct xnselector =selector)

Destroy a selector block.

Detailed Description

File descriptors events multiplexing services.

This module implements the services needed for implementing the posix "select” service, or any other
events multiplexing services.

Following the implementation of the posix select service, this module defines three types of events:

XNSELECT_READ meaning that a file descriptor is ready for reading;
XNSELECT_WRITE meaning that a file descriptor is ready for writing;
XNSELECT_EXCEPT meaning that a file descriptor received an exceptional event.

It works by defining two structures:

a struct xnselect structure, which should be added to every file descriptor for every event type
(read, write, or except);

a struct xnselector structure, the selection structure, passed by the thread calling the xnselect
service, where this service does all its housekeeping.

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen


$group__nucleus.html

4.10 File descriptors events multiplexing services.

67

4.10.2 Function Documentation

4.10.21

int xnselect ( struct xnselector = selector, fd_set * out_fds[XNSELECT_-MAX_TYPES], fd_set *

in_fds[XNSELECT_MAX_TYPES], int nfds, xnticks_t timeout, xntmode_t timeout_mode )

Check the state of a number of file descriptors, wait for a state change if no descriptor is ready.

Parameters

selector

structure to check for pending events

out fds

The set of descriptors with pending events if a strictly positive number is returned, or
the set of descriptors not yet bound if -ECHRNG is returned;

in_fds

the set of descriptors which events should be checked

nfds

the highest-numbered descriptor in any of the in_fds sets, plus 1;

timeout

the timeout, whose meaning depends on timeout_mode, note that xnselect() pass
timeout and timeout_mode unchanged to xnsynch_sleep_on, so passing a relative
value different from XN_INFINITE as a timeout with timeout_mode set to XN_RELA-
TIVE, will cause a longer sleep than expected if the sleep is interrupted.

timeout_mode

the mode of timeout.

Return values

-EINVAL | if nfds is negative;
-ECHRNG | if some of the descriptors passed in in_fds have not yet been registered with
xnselect_bind(), out_fds contains the set of such descriptors;
-EINTR | if xnselect was interrupted while waiting;

0 | in case of timeout.

the | number of file descriptors having received an event.

References XNBREAK, xnsynch_sleep_on(), and XNTIMEO.

410.2.2

int xnselect_bind ( struct xnselect = select_block, struct xnselect_binding = binding, struct xnselector = selector,

unsigned fype, unsigned index, unsigned state )

Bind a file descriptor (represented by its xnselect structure) to a selector block.

Parameters

select _block

pointer to the struct xnselect to be bound;

binding

pointer to a newly allocated (using xnmalloc) struct xnselect _binding;

selector

pointer to the selector structure;

type

type of events (XNSELECT_READ, XNSELECT_WRITE, or XNSELECT_EXCEPT);

index

index of the file descriptor (represented by select_block) in the bit fields used by the
selector structure;

State

current state of the file descriptor>.

select_block must have been initialized with xnselect_init(), the xnselector structure must have been
initialized with xnselector_init(), binding may be uninitialized.

This service must be called with nklock locked, irgs off. For this reason, the binding parameter must
have been allocated by the caller outside the locking section.

Return values

-EINVAL | if type or index is invalid;

0 | otherwise.

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen




68 Module Documentation

References xnpod_schedule().

4.10.2.3 void xnselect_destroy ( struct xnselect + select_block )

Destroy the xnselect structure associated with a file descriptor.

Any binding with a xnselector block is destroyed.

Parameters

| select_block | pointer to the xnselect structure associated with a file descriptor

References xnpod_schedule().

4.10.2.4 void xnselect_init ( struct xnselect = select block )

Initialize a struct xnselect structure.

This service must be called to initialize a struct xnselect structure before it is bound to a selector by the
means of xnselect_bind().

Parameters

| select block | pointer to the xnselect structure to be initialized

4.10.2.5 void xnselector_destroy ( struct xnselector * selector )

Destroy a selector block.

All bindings with file descriptor are destroyed.

Parameters

| selector | the selector block to be destroyed

Referenced by xnpod_delete_thread().

4.10.2.6 int xnselector_init ( struct xnselector * selector )

Initialize a selector structure.

Parameters

| selector | The selector structure to be initialized.

Return values

| 0]

References xnsynch_init().

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen



4.11 Real-time shadow services. 69

4.11 Real-time shadow services.

Collaboration diagram for Real-time shadow services.:

Xenomai nucleus. |«@——— Real-time shadow services.

Files

e file shadow.c

Real-time shadow services.

Functions

¢ int xnshadow_harden (void)

Migrate a Linux task to the Xenomai domain.
¢ void xnshadow_relax (int notify, int reason)

Switch a shadow thread back to the Linux domain.

e int xnshadow_map (xnthread_t «thread, xncompletion_t __user =u_completion, unsigned long __-
user =u_mode_offset)

Create a shadow thread context.
e xnshadow_ppd_t * xnshadow_ppd_get (unsigned muxid)

Return the per-process data attached to the calling process.

4.11.1 Detailed Description

Real-time shadow services.

4.11.2 Function Documentation
411.2.1 int xnshadow_harden ( void )

Migrate a Linux task to the Xenomai domain.

This service causes the transition of "current" from the Linux domain to Xenomai. This is obtained
by asking the gatekeeper to resume the shadow mated with "current” then triggering the rescheduling
procedure in the Xenomai domain. The shadow will resume in the Xenomai domain as returning from
schedule().

Environments:

This service can be called from:
e User-space thread operating in secondary (i.e. relaxed) mode.

Rescheduling: always.
References XNATOMIC, XNDEBUG, xnpod_dispatch_signals(), XNRELAX, and xnshadow_relax().

Referenced by xnshadow_map().

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen


$group__nucleus.html

70

Module Documentation

4.11.2.2 int xnshadow_map ( xnthread_t » thread, xncompletion_t __user = u_completion, unsigned long __user * u_mode_offset

)

Create a shadow thread context.

This call maps a nucleus thread to the "current" Linux task. The priority and scheduling class of the
underlying Linux task are not affected; it is assumed that the interface library did set them appropriately
before issuing the shadow mapping request.

Parameters

thread

The descriptor address of the new shadow thread to be mapped to "current". This
descriptor must have been previously initialized by a call to xnpod_init_thread().

u_completion

is the address of an optional completion descriptor aimed at synchronizing our parent
thread with us. If non-NULL, the information xnshadow_map() will store into the com-
pletion block will be later used to wake up the parent thread when the current shadow
has been initialized. In the latter case, the new shadow thread is left in a dormant
state (XNDORMANT) after its creation, leading to the suspension of "current" in the
Linux domain, only processing signals. Otherwise, the shadow thread is immediately
started and "current" immediately resumes in the Xenomai domain from this service.

u_mode_offset is the address of a user space address where we will store the offset
of the "u_mode" thread variable in the process shared heap. This thread variable
reflects the current thread mode (primary or secondary). The nucleus will try to
update the variable before switching to secondary or after switching from primary
mode.

Returns

0 is returned on success. Otherwise:

e -ERESTARTSYS is returned if the current Linux task has received a signal, thus preventing the
final migration to the Xenomai domain (i.e. in order to process the signal in the Linux domain).
This error should not be considered as fatal.

e -EPERM is returned if the shadow thread has been killed before the current task had a chance
to return to the caller. In such a case, the real-time mapping operation has failed globally, and no
Xenomai resource remains attached to it.

e -EINVAL is returned if the thread control block does not bear the XNSHADOW bit.

e -EBUSY s returned if either the current Linux task or the associated shadow thread is already
involved in a shadow mapping.

Environments:

This service can be called from:

e Regular user-space process.

Rescheduling: always.

References xnheap_alloc(), XNMAPPED, XNOTHER, xnpod_start_thread(), xnpod_suspend_thread(),
XNPRIOSET, XNRELAX, XNSHADOW, and xnshadow_harden().

4.11.2.3 xnshadow_ppd_t+ xnshadow_ppd_get ( unsigned muxid )

Return the per-process data attached to the calling process.

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen




4.11 Real-time shadow services. 71

This service returns the per-process data attached to the calling process for the skin whose muxid is
muxid. It must be called with nklock locked, irgs off.

See xnshadow_register_interface() documentation for information on the way to attach a per-process
data to a process.

Parameters

| muxid | the skin muxid.

Returns

the per-process data if the current context is a user-space process;
NULL otherwise.

4.11.2.4 void xnshadow_relax ( int notify, int reason )

Switch a shadow thread back to the Linux domain.

This service yields the control of the running shadow back to Linux. This is obtained by suspending the
shadow and scheduling a wake up call for the mated user task inside the Linux domain. The Linux task
will resume on return from xnpod_suspend_thread() on behalf of the root thread.

Parameters

notify | A boolean flag indicating whether threads monitored from secondary mode switches
should be sent a SIGDEBUG signal. For instance, some internal operations like task
exit should not trigger such signal.

reason | The reason to report along with the SIGDEBUG signal.

Environments:

This service can be called from:
e User-space thread operating in primary (i.e. harden) mode.

Rescheduling: always.

Note

"current” is valid here since the shadow runs with the properties of the Linux task.
References XNAFFSET, xnpod_suspend_thread(), XNPRIOSET, XNRELAX, XNROOT, and XNTRAP-
SW.

Referenced by xnpod_trap_fault(), and xnshadow_harden().

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen



72

Module Documentation

4.12 Thread synchronization services.

Collaboration diagram for Thread synchronization services.:

Files

Thread synchronization

Xenomai nucleus. |«— .
services.

file synch.c

Thread synchronization services.

Functions

4.121

void xnsynch_init (struct xnsynch =synch, xnflags_t flags, xnarch_atomic_t »fastlock)

Initialize a synchronization object.

xnflags_t xnsynch_sleep_on (struct xnsynch =xsynch, xnticks_t timeout, xntmode_t timeout_-
mode)

Sleep on an ownerless synchronization object.
struct xnthread = xnsynch_wakeup_one_sleeper (struct xnsynch =synch)

Give the resource ownership to the next waiting thread.

struct xnpholder * xnsynch_wakeup_this_sleeper (struct xnsynch =synch, struct xnpholder
+holder)

Give the resource ownership to a given waiting thread.
xnflags_t xnsynch_acquire (struct xnsynch =synch, xnticks_t timeout, xntmode_t timeout_mode)

Acquire the ownership of a synchronization object.
static void xnsynch_clear_boost (struct xnsynch =synch, struct xnthread ~owner)

Clear the priority boost.

void xnsynch_requeue_sleeper (struct xnthread =thread)
Change a sleeper’s priority.

struct xnthread = xnsynch_release (struct xnsynch =synch)

Give the resource ownership to the next waiting thread.
struct xnthread = xnsynch_peek_pendq (struct xnsynch ssynch)

Access the thread leading a synch object wait queue.
int xnsynch_flush (struct xnsynch =synch, xnflags_t reason)

Unblock all waiters pending on a resource.
void xnsynch_forget_sleeper (struct xnthread =thread)

Abort a wait for a resource.
void xnsynch_release_all_ownerships (struct xnthread =thread)

Release all ownerships.

Detailed Description

Thread synchronization services.

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen


$group__nucleus.html

4.12 Thread synchronization services. 73

4.12.2 Function Documentation
4.12.2.1 xnflags_t xnsynch_acquire ( struct xnsynch x synch, xnticks_t timeout, xntmode_t timeout_mode )

Acquire the ownership of a synchronization object.

This service should be called by upper interfaces wanting the current thread to acquire the ownership of
the given resource. If the resource is already assigned to a thread, the caller is suspended.

This service must be used only with synchronization objects that track ownership (XNSYNCH_OWNER
set.

Parameters

synch | The descriptor address of the synchronization object to acquire.

timeout | The timeout which may be used to limit the time the thread pends on the resource.
This value is a wait time given in ticks (see note). It can either be relative, absolute
monotonic, or absolute adjustable depending on timeout_mode. Passing XN_INF-
INITE and setting mode to XN_RELATIVE specifies an unbounded wait. All other
values are used to initialize a watchdog timer.

timeout_mode | The mode of the timeout parameter. It can either be set to XN_RELATIVE, XN_AB-
SOLUTE, or XN_REALTIME (see also xntimer_start()).

Returns

A bitmask which may include zero or one information bit among XNRMID, XNTIMEO and XNBR-
EAK, which should be tested by the caller, for detecting respectively: object deletion, timeout or
signal/unblock conditions which might have happened while waiting.

Environments:

This service can be called from:

e Kernel module initialization/cleanup code
e Kernel-based task

e User-space task

Rescheduling: possible.

Note

The timeout value will be interpreted as jiffies if the current thread is bound to a periodic time base
(see xnpod_init_thread), or nanoseconds otherwise.

References XNBOOST, XNBREAK, XNOTHER, XNPEND, xnpod_suspend_thread(), XNRMID, XNRO-
BBED, XNTIMEO, and XNWAKEN.

4.12.2.2 void xnsynch_clear_boost ( struct xnsynch * synch, struct xnthread » owner ) [static]

Clear the priority boost.

This service is called internally whenever a synchronization object is not claimed anymore by sleepers
to reset the object owner’s priority to its initial level.

Parameters

synch | The descriptor address of the synchronization object.

owner | The descriptor address of the thread which currently owns the synchronization object.

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen



74 Module Documentation

Note

This routine must be entered nklock locked, interrupts off.

References XNBOOST, and XNZOMBIE.

Referenced by xnsynch_flush(), and xnsynch_forget_sleeper().

4.12.2.3 int xnsynch_flush ( struct xnsynch = synch, xnflags_t reason )

Unblock all waiters pending on a resource.

This service atomically releases all threads which currently sleep on a given resource.

This service should be called by upper interfaces under circumstances requiring that the pending queue
of a given resource is cleared, such as before the resource is deleted.

Parameters

synch | The descriptor address of the synchronization object to be flushed.

reason | Some flags to set in the information mask of every unblocked thread. Zero is an
acceptable value. The following bits are pre-defined by the nucleus:

e XNRMID should be set to indicate that the synchronization object is about to be destroyed (see
xnpod_resume_thread()).

e XNBREAK should be set to indicate that the wait has been forcibly interrupted (see
xnpod_unblock_thread()).

Returns

XNSYNCH_RESCHED is returned if at least one thread is unblocked, which means the caller should
invoke xnpod_schedule() for applying the new scheduling state. Otherwise, XNSYNCH_DONE is
returned.

Side-effects:

e The effective priority of the previous resource owner might be lowered to its base priority value as
a consequence of the priority inheritance boost being cleared.

e The synchronization object is no more owned by any thread.

Environments:

This service can be called from:

¢ Kernel module initialization/cleanup code
e Interrupt service routine
e Kernel-based task

e User-space task

Rescheduling: never.
References XNPEND, xnpod_resume_thread(), and xnsynch_clear_boost().

Referenced by xnregistry_put().

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen



4.12 Thread synchronization services. 75

412.2.4 void xnsynch_forget_sleeper ( struct xnthread = thread )

Abort a wait for a resource.

Performs all the necessary housekeeping chores to stop a thread from waiting on a given synchroniza-
tion object.

Parameters

thread | The descriptor address of the affected thread.

When the trace support is enabled (i.e. MVM), the idle state is posted to the synchronization object’s
state diagram (if any) whenever no thread remains blocked on it. The real-time interfaces must ensure
that such condition (i.e. EMPTY/IDLE) is mapped to state #0.

Note

This routine must be entered nklock locked, interrupts off.

References XNPEND, and xnsynch_clear_boost().

Referenced by xnpod_delete_thread(), xnpod_resume_thread(), and xnpod_suspend_thread().

412.2.5 void xnsynch_init ( struct xnsynch * synch, xnflags_t flags, xnarch_atomic_t = fastlock )

Initialize a synchronization object.

Initializes a new specialized object which can subsequently be used to synchronize real-time activi-

ties.

The Xenomai nucleus provides a basic synchronization object which can be used to build higher

resource objects. Nucleus threads can wait for and signal such objects in order to synchronize their
activities.

This object has built-in support for priority inheritance.

Parameters

synch | The address of a synchronization object descriptor the nucleus will use to store the
object-specific data. This descriptor must always be valid while the object is active
therefore it must be allocated in permanent memory.

flags | A set of creation flags affecting the operation. The valid flags are:

e XNSYNCH_PRIO causes the threads waiting for the resource to pend in priority order. Otherwise,

FIFO ordering is used (XNSYNCH_FIFO).

e XNSYNCH_OWNER indicates that the synchronization object shall track its owning thread (re-

quired if XNSYNCH_PIP is selected). Note that setting this flag implies the use xnsynch_acquire
and xnsynch_release instead of xnsynch_sleep_on and xnsynch_wakeup_one_sleeper/xnsynch-
_wakeup_this_sleeper.

e XNSYNCH_PIP causes the priority inheritance mechanism to be automatically activated when a

priority inversion is detected among threads using this object. Otherwise, no priority inheritance
takes place upon priority inversion (XNSYNCH_NOPIP).

e XNSYNCH_DREORD (Disable REORDering) tells the nucleus that the wait queue should not be

reordered whenever the priority of a blocked thread it holds is changed. If this flag is not specified,
changing the priority of a blocked thread using xnpod_set_thread_schedparam() will cause this
object’s wait queue to be reordered according to the new priority level, provided the synchronization
object makes the waiters wait by priority order on the awaited resource (XNSYNCH_PRIO).

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen




76 Module Documentation

Parameters

fastlock | Address of the fast lock word to be associated with the synchronization object. If
NULL is passed or XNSYNCH_OWNER is not set, fast-lock support is disabled.

Environments:

This service can be called from:

¢ Kernel module initialization/cleanup code
¢ Kernel-based task

e User-space task

Rescheduling: never.

Referenced by xnregistry_enter(), and xnselector_init().

4,12.2.6 struct xnthread+ xnsynch_peek_pendq ( struct xnsynch = synch ) [read]

Access the thread leading a synch object wait queue.

This services returns the descriptor address of to the thread leading a synchronization object wait queue.

Parameters
| synch | The descriptor address of the target synchronization object. |

Returns

The descriptor address of the unblocked thread.

Environments:

This service can be called from:

¢ Kernel module initialization/cleanup code
¢ Interrupt service routine
e Kernel-based task

e User-space task

Rescheduling: never.

4.12.2.7 struct xnthread+ xnsynch_release ( struct xnsynch = synch ) [read]

Give the resource ownership to the next waiting thread.

This service releases the ownership of the given synchronization object. The thread which is currently
leading the object’s pending list, if any, is unblocked from its pending state. However, no reschedule is
performed.

This service must be used only with synchronization objects that track ownership (XNSYNCH_OWNER
set).

Parameters
| synch | The descriptor address of the synchronization object whose ownership is changed. |

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen



4.12 Thread synchronization services. 77

Returns

The descriptor address of the unblocked thread.
Side-effects:

e The effective priority of the previous resource owner might be lowered to its base priority value as
a consequence of the priority inheritance boost being cleared.

e The synchronization object ownership is transfered to the unblocked thread.

Environments:

This service can be called from:

e Kernel module initialization/cleanup code
e Interrupt service routine
e Kernel-based task

e User-space task

Rescheduling: never.

412.2.8 void xnsynch_release_all_ownerships ( struct xnthread = thread )

Release all ownerships.

This call is used internally to release all the ownerships obtained by a thread on synchronization objects.
This routine must be entered interrupts off.

Parameters

| thread | The descriptor address of the affected thread.

Note

This routine must be entered nklock locked, interrupts off.

Referenced by xnpod_delete_thread().

412.2.9 void xnsynch_requeue_sleeper ( struct xnthread ~ thread )

Change a sleeper’s priority.

This service is used by the PIP code to update the pending priority of a sleeping thread.

Parameters

| thread | The descriptor address of the affected thread.

Note

This routine must be entered nklock locked, interrupts off.

References XNBOOST.

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen



78 Module Documentation

4,12.2.10 xnflags_t xnsynch_sleep_on ( struct xnsynch * synch, xnticks_t timeout, xntmode_t timeout_mode )

Sleep on an ownerless synchronization object.
Makes the calling thread sleep on the specified synchronization object, waiting for it to be signaled.

This service should be called by upper interfaces wanting the current thread to pend on the given re-
source. It must not be used with synchronization objects that are supposed to track ownership (XNSY-
NCH_OWNER).

Parameters

synch | The descriptor address of the synchronization object to sleep on.

timeout | The timeout which may be used to limit the time the thread pends on the resource.
This value is a wait time given in ticks (see note). It can either be relative, absolute
monotonic, or absolute adjustable depending on timeout_mode. Passing XN_INF-
INITE and setting mode to XN_RELATIVE specifies an unbounded wait. All other
values are used to initialize a watchdog timer.

timeout_mode | The mode of the timeout parameter. It can either be set to XN_RELATIVE, XN_AB-
SOLUTE, or XN_REALTIME (see also xntimer_start()).

Returns

A bitmask which may include zero or one information bit among XNRMID, XNTIMEO and XNBR-
EAK, which should be tested by the caller, for detecting respectively: object deletion, timeout or
signal/unblock conditions which might have happened while waiting.

Environments:

This service can be called from:

e Kernel module initialization/cleanup code
e Kernel-based task

e User-space task

Rescheduling: always.

Note

The timeout value will be interpreted as jiffies if the current thread is bound to a periodic time base
(see xnpod_init_thread), or nanoseconds otherwise.

References XNBREAK, XNPEND, xnpod_suspend_thread(), XNRMID, and XNTIMEO.

Referenced by xnregistry_bind(), xnregistry_remove_safe(), and xnselect().

4.12.2.11 struct xnthread+ xnsynch_wakeup_one_sleeper ( struct xnsynch = synch ) [read]

Give the resource ownership to the next waiting thread.

This service wakes up the thread which is currently leading the synchronization object’s pending list.
The sleeping thread is unblocked from its pending state, but no reschedule is performed.

This service should be called by upper interfaces wanting to signal the given resource so that a single
waiter is resumed. It must not be used with synchronization objects that are supposed to track ownership
(XNSYNCH_OWNER not set).

Parameters
| synch | The descriptor address of the synchronization object whose ownership is changed. |

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen



4.12 Thread synchronization services. 79

Returns

The descriptor address of the unblocked thread.
Side-effects:

e The effective priority of the previous resource owner might be lowered to its base priority value as
a consequence of the priority inheritance boost being cleared.

e The synchronization object ownership is transfered to the unblocked thread.

Environments:

This service can be called from:

e Kernel module initialization/cleanup code
e Interrupt service routine
e Kernel-based task

e User-space task

Rescheduling: never.

References XNPEND, and xnpod_resume_thread().

4.12.2.12  struct xnpholder+ xnsynch_wakeup_this_sleeper ( struct xnsynch = synch, struct xnpholder = holder ) [read]

Give the resource ownership to a given waiting thread.

This service wakes up a specific thread which is currently pending on the given synchronization object.
The sleeping thread is unblocked from its pending state, but no reschedule is performed.

This service should be called by upper interfaces wanting to signal the given resource so that a specific
waiter is resumed. It must not be used with synchronization objects that are supposed to track ownership
(XNSYNCH_OWNER not set).

Parameters

synch | The descriptor address of the synchronization object whose ownership is changed.

holder | The link holder address of the thread to unblock (&thread->plink) which MUST be
currently linked to the synchronization object’s pending queue (i.e. synch->pendq).

Returns

The link address of the unblocked thread in the synchronization object’s pending queue.
Side-effects:

e The effective priority of the previous resource owner might be lowered to its base priority value as
a consequence of the priority inheritance boost being cleared.

e The synchronization object ownership is transfered to the unblocked thread.

Environments:

This service can be called from:

¢ Kernel module initialization/cleanup code

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen



80

Module Documentation

e Interrupt service routine
e Kernel-based task

e User-space task

Rescheduling: never.

References XNPEND, and xnpod_resume_thread().

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen



4.13 Time base services. 81

4.13 Time base services.

Collaboration diagram for Time base services.:

Xenomai nucleus. |«@——— Time base services.

Files

o file timebase.h
o file timebase.c

Functions

e int xntbase_alloc (const char xname, u_long period, u_long flags, xntbase_t +basep)

Allocate a time base.
¢ void xntbase_free (xntbase_t =base)

Free a time base.
¢ int xntbase_update (xntbase_t =base, u_long period)

Change the period of a time base.
¢ int xntbase_switch (const char sname, u_long period, xntbase_t =basep)

Replace a time base.
¢ void xntbase_start (xntbase_t =base)

Start a time base.
e void xntbase_stop (xntbase_t <base)

Stop a time base.
¢ void xntbase_tick (xntbase_t =base)

Announce a clock tick to a time base.
e xnticks_t xntbase_convert (xntbase_t xsrcbase, xnticks_t ticks, xntbase_t =dstbase)

Convert a clock value into another time base.
o static xnticks_t xntbase_get_time (xntbase_t =base)

Get the clock time for a given time base.
¢ void xntbase_adjust_time (xntbase_t =base, xnsticks_t delta)

Adjust the clock time for the system.

4.13.1 Detailed Description

Xenomai implements the notion of time base, by which software timers that belong to different skins may
be clocked separately according to distinct frequencies, or aperiodically. In the periodic case, delays and
timeouts are given in counts of ticks; the duration of a tick is specified by the time base. In the aperiodic
case, timings are directly specified in nanoseconds.

Only a single aperiodic (i.e. tick-less) time base may exist in the system, and the nucleus provides for
it through the nktbase object. All skins depending on aperiodic timings should bind to the latter (see
xntbase_alloc()), also known as the master time base.

Skins depending on periodic timings may create and bind to their own time base. Such a periodic time
base is managed as a timed slave object of the master time base. A cascading software timer fired
by the master time base according to the appropriate frequency, triggers in turn the update process of
the associated timed slave, which eventually fires the elapsed software timers controlled by the periodic
time base. In other words, Xenomai emulates periodic timing over an aperiodic policy.

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen


$group__nucleus.html

82 Module Documentation

Xenomai always controls the underlying timer hardware in a tick-less fashion, also known as the oneshot
mode.

4.13.2 Function Documentation
413.2.1 void xntbase_adjust_time ( xntbase_t » base, xnsticks_t delfa )

Adjust the clock time for the system.

Xenomai tracks the current time as a monotonously increasing count of ticks since the epoch. The epoch
is initially the same as the underlying machine time, and it is always synchronised across all active time
bases.

This service changes the epoch for the system by applying the specified tick delta on the master’s
wallclock offset and resynchronizing all other time bases.

Parameters

base | The address of the initiating time base.

delta | The adjustment of the system time expressed in ticks of the specified time base.

Note

This routine must be entered nklock locked, interrupts off.

Environments:

This service can be called from:

e Kernel module initialization/cleanup code
e Interrupt service routine
e Kernel-based task

e User-space task

Rescheduling: never.

4.13.2.2 int xntbase_alloc ( const char x name, u_long period, u_long flags, xntbase_t ++ basep )

Allocate a time base.

A time base is an abstraction used to provide private clocking information to real-time skins, by which
they may operate either in aperiodic or periodic mode, possibly according to distinct clock frequencies
in the latter case. This abstraction is required in order to support several RTOS emulators running
concurrently, which may exhibit different clocking policies and/or period.

Once allocated, a time base may be attached to all software timers created directly or indirectly by a
given skin, and influences all timed services accordingly.

The xntbase_alloc() service allocates a new time base to the caller, and returns the address of its
descriptor. The new time base is left in a disabled state (unless period equals XN_APERIODIC_TICK),
calling xntbase_start() is needed to enable it.

Parameters

name | The symbolic name of the new time base. This information is used to report status
information when reading from /proc/xenomai/timebases; it has currently no other
usage.

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen



4.13 Time base services. 83

period | The duration of the clock tick for the new time base, given as a count of nanosec-
onds. The special XN_APERIODIC_TICK value may be used to retrieve the master
- aperiodic - time base, which is always up and running when a real-time skin has
called the xnpod_init() service. All other values are meant to define the clock rate of
a periodic time base. For instance, passing 1000000 (ns) in the period parameter will
create a periodic time base clocked at a frequency of 1Khz.

flags | A bitmask composed as follows:

- XNTBISO causes the target timebase to be isolated from
global wallclock offset updates as performed by
xntbase_adjust_time().

basep | A pointer to a memory location which will be written upon success with the address
of the allocated time base. If period equals XN_APERIODIC_TICK, the address of
the built-in master time base descriptor will be copied back to this location.

Returns

0 is returned on success. Otherwise:
e -ENOMEM is returned if no system memory is available to allocate a new time base descriptor.

Environments:

This service can be called from:

e Kernel module initialization code

e User-space task in secondary mode

Rescheduling: never.

Note

Any periodic time base allocated by a real-time skin must be released by a call to xntbase_free()
before the kernel module implementing the skin may be unloaded.

Referenced by xntbase_switch().

4.13.2.3 xnticks_t xntbase_convert ( xntbase_t » srchase, xnticks_t ticks, xntbase_t » dstbase )

Convert a clock value into another time base.

Parameters

srcbase | The descriptor address of the source time base.

ticks | The clock value expressed in the source time base to convert to the destination time
base.

dstbase | The descriptor address of the destination time base.

Returns

The converted count of ticks in the destination time base is returned.

Environments:

This service can be called from:

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen



84 Module Documentation

e Kernel module initialization code
e Kernel-based task

e User-space task

Rescheduling: never.

413.2.4 void xntbase_free ( xntbase_t » base )

Free a time base.

This service disarms all outstanding timers from the affected periodic time base, destroys the aperiodic
cascading timer, then releases the time base descriptor.

Parameters

| base | The address of the time base descriptor to release.

Environments:

This service can be called from:

e Kernel module initialization/cleanup code

e User-space task in secondary mode

Rescheduling: never.

Note

Requests to free the master time base are silently caught and discarded; in such a case, outstanding
aperiodic timers are left untouched.

Referenced by xntbase_switch().

4.13.2.5 xnticks_t xntbase_get_time ( xntbase_t x base ) [inline], [static]

Get the clock time for a given time base.

This service returns the (external) clock time as maintained by the specified time base. This value is
adjusted with the wallclock offset as defined by xntbase_adjust_time().

Parameters

| base | The address of the time base to query.

Returns

The current time (in jiffies) if the specified time base runs in periodic mode, or the machine time
(converted to nanoseconds) as maintained by the hardware if base refers to the master time base.

Environments:

This service can be called from:

e Kernel module initialization/cleanup code

e Interrupt service routine

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen



4.13 Time base services. 85

e Kernel-based task

e User-space task

Rescheduling: never.

Referenced by xnregistry_bind().

4.13.2.6 void xntbase_start ( xntbase_t » base )

Start a time base.

This service enables a time base, using a cascading timer running in the master time base as the source
of periodic clock ticks. The time base is synchronised on the Xenomai system clock. Timers attached to
the started time base are immediated armed.

Parameters

| base | The address of the time base descriptor to start.

Environments:

This service can be called from:

e Kernel module initialization code
e Kernel-based task

e User-space task

Rescheduling: never.

Note

Requests to enable the master time base are silently caught and discarded; only the internal service
xnpod_enable_timesource() is allowed to start the latter. The master time base remains enabled
until no real-time skin remains attached to the nucleus.

Referenced by xntbase_switch().

4.13.2.7 void xntbase_stop ( xntbase_t  base )

Stop a time base.

This service disables a time base, stopping the cascading timer running in the master time base which
is used to clock it. Outstanding timers attached to the stopped time base are immediated disarmed.

Stopping a time base also invalidates its clock setting.

Parameters

| base | The address of the time base descriptor to stop.

Environments:

This service can be called from:

e Kernel module initialization code

e Kernel-based task

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen



86 Module Documentation

e User-space task

Note

Requests to disable the master time base are silently caught and discarded; only the internal service
xnpod_disable_timesource() is allowed to stop the latter. The master time base remains enabled
until no real-time skin remains attached to the nucleus.

4.13.2.8 int xntbase_switch ( const char * name, u_long period, xntbase_t =+ basep )

Replace a time base.

This service is useful for switching the current time base of a real-time skin between aperiodic and
periodic modes, by providing a new time base descriptor as needed. The original time base descriptor
is freed as a result of this operation (unless it refers to the master time base). The new time base is
automatically started by a call to xntbase_start() if the original time base was enabled at the time of the
call, or left in a disabled state otherwise.

This call handles all mode transitions and configuration changes carefully, i.e. periodic <-> periodic,
aperiodic <-> aperiodic, periodic <-> aperiodic.

Parameters

name | The symbolic name of the new time base. This information is used to report status
information when reading from /proc/xenomai/timebases; it has currently no other
usage.

period | The duration of the clock tick for the time base, given as a count of nanoseconds.
This value is meant to define the new clock rate of the new periodic time base (i.e.
1e9 / period).

basep | A pointer to a memory location which will be first read to pick the address of the
original time base to be replaced, then written back upon success with the address
of the new time base. A null pointer is allowed on input in basep, in which case the
new time base will be created as if xntbase_alloc() had been called directly.

Returns

0 is returned on success. Otherwise:
e -ENOMEM is returned if no system memory is available to allocate a new time base descriptor.

Environments:

This service can be called from:

e Kernel module initialization code

e User-space task in secondary mode

Rescheduling: never.

References xntbase_alloc(), xntbase_free(), xntbase_start(), and xntbase_update().

4.13.2.9 void xntbase_tick ( xntbase_t * base )

Announce a clock tick to a time base.

This service announces a new clock tick to a time base. Normally, only specialized nucleus code would
announce clock ticks. However, under certain circumstances, it may be useful to allow client code to
send such notifications on their own.

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen



4.13 Time base services. 87

Notifying a clock tick to a time base causes the timer management code to check for outstanding timers,
which may in turn fire off elapsed timeout handlers. Additionally, periodic time bases (i.e. all but the
master time base) would also update their count of elapsed jiffies, in case the current processor has
been defined as the internal time keeper (i.e. CPU# == XNTIMER_KEEPER_ID).

Parameters

| base | The address of the time base descriptor to announce a tick to.

Environments:

This service can be called from:
e Interrupt context only.

Rescheduling: never.

References xntimer_tick_aperiodic().

4.13.2.10 int xntbase_update ( xntbase_t » base, u_long period )
Change the period of a time base.

Parameters

base | The address of the time base descriptor to update.

period | The duration of the clock tick for the time base, given as a count of nanoseconds.
This value is meant to define the new clock rate of the affected periodic time base
(i.e. 1€9 / period).

Returns

0 is returned on success. Otherwise:
e -EINVAL is returned if an attempt is made to set a null period.

Environments:

This service can be called from:

e Kernel module initialization code
e Kernel-based task

e User-space task

Rescheduling: never.

Note

Requests to update the master time base are silently caught and discarded. The master time base
has a fixed aperiodic policy which may not be changed.

Referenced by xntbase_switch().

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen



88 Module Documentation

4.14 Timer services.

Collaboration diagram for Timer services.:

Xenomai nucleus. |«@——— Timer services.

Files

e file timer.h
o file timer.c

Functions

e static int xntimer_start (xntimer_t «timer, xnticks_t value, xnticks_t interval, xntmode_t mode)

Arm a timer.
e static void xntimer_stop (xntimer_t =timer)

Disarm a timer.
e static xnticks_t xntimer_get_date (xntimer_t «timer)

Return the absolute expiration date.
e static xnticks_t xntimer_get_timeout (xntimer_t «timer)

Return the relative expiration date.
e static xnticks_t xntimer_get_interval (xntimer_t stimer)
Return the timer interval value.
e void xntimer_tick_aperiodic (void)
Process a timer tick for the aperiodic master time base.
e void xntimer_tick_periodic (xntimer_t =mtimer)

Process a timer tick for a slave periodic time base.
e void xntimer_init (xntimer_t «timer, xntbase_t =base, void(xhandler)(xntimer_t xtimer))

Initialize a timer object.
e void xntimer_destroy (xntimer_t =timer)

Release a timer object.

¢ unsigned long xntimer_get_overruns (xntimer_t stimer, xnticks_t now)
Get the count of overruns for the last tick.

¢ void xntimer_freeze (void)

Freeze all timers (from every time bases).

4.14.1 Detailed Description

The Xenomai timer facility always operate the timer hardware in oneshot mode, regardless of the time
base in effect. Periodic timing is obtained through a software emulation, using cascading timers.

Depending on the time base used, the timer object stores time values either as count of jiffies (periodic),
or as count of CPU ticks (aperiodic).

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen


$group__nucleus.html

4.14 Timer services. 89

4.14.2 Function Documentation
4.14.2.1 void xntimer_destroy ( xntimer_t = timer )

Release a timer object.

Destroys a timer. After it has been destroyed, all resources associated with the timer have been released.
The timer is automatically deactivated before deletion if active on entry.

Parameters

| timer | The address of a valid timer descriptor.

Environments:

This service can be called from:

¢ Kernel module initialization/cleanup code
e Interrupt service routine
e Kernel-based task

e User-space task

Rescheduling: never.
References xntimer_stop().

Referenced by xnpod_delete_thread(), and xnpod_shutdown().

4.14.2.2 void xntimer_freeze ( void )

Freeze all timers (from every time bases).
This routine deactivates all active timers atomically.
Environments:

This service can be called from:

¢ Kernel module initialization/cleanup code
e Kernel-based task

e User-space task

Rescheduling: never.

Referenced by xnpod_disable_timesource().

414.2.3 xnticks_t xntimer_get_date ( xntimer_t x timer ) [inline], [static]

Return the absolute expiration date.

Return the next expiration date of a timer in absolute clock ticks (see note).

Parameters

| timer | The address of a valid timer descriptor.

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen



90 Module Documentation

Returns

The expiration date converted to the current time unit. The special value XN_INFINITE is returned
if timer is currently inactive.

Environments:

This service can be called from:

¢ Kernel module initialization/cleanup code
e Interrupt service routine
e Kernel-based task

e User-space task

Rescheduling: never.

Note

This service is sensitive to the current operation mode of the associated time base, as defined by
the xnpod_init_timebase() service. In periodic mode, clock ticks are interpreted as periodic jiffies.
In oneshot mode, clock ticks are interpreted as nanoseconds.

4.14.24 xnticks_t xntimer_get_interval ( xntimer_t » timer ) [inline], [static]

Return the timer interval value.

Return the timer interval value in clock ticks (see note).

Parameters
| timer | The address of a valid timer descriptor.

Returns

The expiration date converted to the current time unit. The special value XN_INFINITE is returned
if timer is currently inactive or aperiodic.

Environments:

This service can be called from:

e Kernel module initialization/cleanup code
e Interrupt service routine
e Kernel-based task

e User-space task

Rescheduling: never.

Note

This service is sensitive to the current operation mode of the associated time base, as defined by
the xnpod_init_timebase() service. In periodic mode, clock ticks are interpreted as periodic jiffies.
In oneshot mode, clock ticks are interpreted as nanoseconds.

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen



4.14 Timer services. 91

4.14.2.5 unsigned long xntimer_get_overruns ( xntimer_t » timer, xnticks_t now )

Get the count of overruns for the last tick.

This service returns the count of pending overruns for the last tick of a given timer, as measured by the
difference between the expected expiry date of the timer and the date now passed as argument.

Parameters

timer | The address of a valid timer descriptor.

now | current date (in the monotonic time base)

Returns

the number of overruns of timer at date now

Referenced by xnpod_wait_thread_period().

4.14.2.6 xnticks_t xntimer_get_timeout ( xntimer_t = timer ) [inline], [static]

Return the relative expiration date.

Return the next expiration date of a timer in relative clock ticks (see note).

Parameters

| timer | The address of a valid timer descriptor.

Returns

The expiration date converted to the current time unit. The special value XN_INFINITE is returned
if timer is currently inactive. In oneshot mode, it might happen that the timer has already expired
when this service is run (even if the associated handler has not been fired yet); in such a case, 1 is
returned.

Environments:

This service can be called from:

e Kernel module initialization/cleanup code
¢ Interrupt service routine
e Kernel-based task

e User-space task

Rescheduling: never.

Note

This service is sensitive to the current operation mode of the associated time base, as defined by
the xnpod_init_timebase() service. In periodic mode, clock ticks are interpreted as periodic jiffies.
In oneshot mode, clock ticks are interpreted as nanoseconds.

4.14.2.7 void xntimer_init ( xntimer_t * timer, xntbase_t » base, void(+)(xntimer_t =timer) handler )

Initialize a timer object.

Creates a timer. When created, a timer is left disarmed; it must be started using xntimer_start() in order
to be activated.

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen



92

Module Documentation

Parameters

timer

The address of a timer descriptor the nucleus will use to store the object-specific
data. This descriptor must always be valid while the object is active therefore it must
be allocated in permanent memory.

base

The descriptor address of the time base the new timer depends on. See
xntbase_alloc() for detailed explanations about time bases.

handler

The routine to call upon expiration of the timer.

There is no limitation on the number of timers which can be created/active concurrently.

Environments:

This service can be called from:

¢ Kernel module initialization/cleanup code

e Interrupt service routine

e Kernel-based task

e User-space task

Rescheduling: never.

Referenced by xnpod_init().

4.14.2.8 void xntimer_start ( xntimer_t = timer, xnticks_t value, xnticks_t interval, xntmode_t mode ) [inline], [static]

Arm a timer.

Activates a timer so that the associated timeout handler will be fired after each expiration time. A timer
can be either periodic or single-shot, depending on the reload value passed to this routine. The given
timer must have been previously initialized, and will be clocked according to the policy defined by the
time base specified in xntimer_init().

Parameters

timer

The address of a valid timer descriptor.

value

The date of the initial timer shot, expressed in clock ticks (see note).

interval

The reload value of the timer. It is a periodic interval value to be used for reprogram-
ming the next timer shot, expressed in clock ticks (see note). If interval is equal to
XN_INFINITE, the timer will not be reloaded after it has expired.

mode

The timer mode. It can be XN_RELATIVE if value shall be interpreted as a relative
date, XN_ABSOLUTE for an absolute date based on the monotonic clock of the
related time base (as returned my xntbase_get_jiffies()), or XN_REALTIME if the
absolute date is based on the adjustable real-time clock of the time base (as returned
by xntbase_get_time().

Returns

0 is returned upon success, or -ETIMEDOUT if an absolute date in the past has been given.

Environments:

This service can be called from:

e Kernel module initialization/cleanup code

e Interrupt service routine

e Kernel-based task

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen




4.14 Timer services. 93

e User-space task

Rescheduling: never.

Note

This service is sensitive to the current operation mode of the associated time base, as defined by
the xnpod_init_timebase() service. In periodic mode, clock ticks are interpreted as periodic jiffies.
In oneshot mode, clock ticks are interpreted as nanoseconds.

Must be called with nklock held, IRQs off.

Referenced by xnpod_enable_timesource(), xnpod_set_thread_periodic(), xnpod_set_thread_tslice(),
and xnpod_suspend_thread().

4.14.2.9 int xntimer_stop ( xntimer_t = timer ) [inline], [static]

Disarm a timer.

This service deactivates a timer previously armed using xntimer_start(). Once disarmed, the timer can
be subsequently re-armed using the latter service.

Parameters

| timer | The address of a valid timer descriptor.

Environments:

This service can be called from:

e Kernel module initialization/cleanup code
¢ Interrupt service routine
e Kernel-based task

e User-space task

Rescheduling: never.

Note
Must be called with nklock held, IRQs off.

Referenced by xnpod_resume_thread(), xnpod_set_thread_periodic(), xnpod_set_thread_tslice(), and
xntimer_destroy().

4.14.2.10 void xntimer_tick_aperiodic ( void )

Process a timer tick for the aperiodic master time base.

This routine informs all active timers that the clock has been updated by processing the outstanding
timer list. Elapsed timer actions will be fired.

Environments:

This service can be called from:

e Interrupt service routine, nklock locked, interrupts off

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen



94 Module Documentation

Rescheduling: never.
References xnsched::htimer, xnsched::lflags, and xnsched::status.

Referenced by xntbase_ tick().

4.14.2.11 void xntimer_tick_periodic ( xntimer_t * mtimer )

Process a timer tick for a slave periodic time base.

The periodic timer tick is cascaded from a software timer managed from the master aperiodic time base;
in other words, periodic timing is emulated by software timers running in aperiodic timing mode. There
may be several concurrent periodic time bases (albeit a single aperiodic time base - i.e. the master one
called "nktbase" - may exist at any point in time).

This routine informs all active timers that the clock has been updated by processing the timer wheel.
Elapsed timer actions will be fired.

Parameters

mtimer | The address of the cascading timer running in the master time base which an-
nounced the tick.

Environments:

This service can be called from:
e Interrupt service routine, nklock locked, interrupts off

Rescheduling: never.

Note

Only active timers are inserted into the timer wheel.

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen



4.15 Virtual file services 95

4.15 Virtual file services

Collaboration diagram for Virtual file services:

Xenomai nucleus. |«@——— Virtual file services

Files

o file vfile.h
This file is part of the Xenomai project.

Data Structures

e struct xnvfile_lock_ops
Vfile locking operations.
e struct xnvfile_regular_ops
Regular vfile operation descriptor.
e struct xnvfile_regular_iterator
Regular vfile iterator.
e struct xnvfile_snapshot_ops
Snapshot vfile operation descriptor.
e struct xnvfile_rev_tag
Snapshot revision tag.
e struct xnvfile_snapshot
Snapshot vfile descriptor.
e struct xnvfile_snapshot_iterator
Snapshot-driven vfile iterator.

Functions

¢ int xnvfile_init_snapshot (const char sname, struct xnvfile_snapshot =vfile, struct xnvfile_directory
sparent)
Initialize a snapshot-driven Vfile.
e int xnvfile_init_regular (const char *name, struct xnvfile_regular =vfile, struct xnvfile_directory
sparent)
Initialize a regular vfile.
e int xnvfile_init_dir (const char =name, struct xnvfile_directory =vdir, struct xnvfile_directory
=parent)
Initialize a virtual directory entry.
e int xnvfile_init_link (const char =from, const char =to, struct xnvfile_link =vlink, struct xnvfile_-
directory =parent)
Initialize a virtual link entry.
e void xnvfile_destroy (struct xnvfile =vfile)
Removes a virtual file entry.
e ssize_t xnvfile_get_blob (struct xnvfile_input +input, void =data, size_t size)
Read in a data bulk written to the vfile.
e ssize_t xnvfile_get_string (struct xnvfile_input =input, char =s, size_t maxlen)

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen


$group__nucleus.html

96 Module Documentation

Read in a C-string written to the Vfile.
e ssize_t xnvfile_get_integer (struct xnvfile_input =input, long =valp)
Evaluate the string written to the Vfile as a long integer.

Variables

e struct xnvfile_directory nkvfroot

Xenomai vfile root directory.
e struct xnvfile_directory nkvfroot

Xenomai vfile root directory.

4.15.1 Detailed Description

Virtual files provide a mean to export Xenomai object states to user-space, based on common kernel
interfaces. This encapsulation is aimed at:

e supporting consistent collection of very large record-based output, without encurring latency peaks
for undergoing real-time activities.

¢ in the future, hiding discrepancies between linux kernel releases, regarding the proper way to
export kernel object states to userland, either via the /proc interface or by any other mean.

This virtual file implementation offers record-based read support based on seq_files, single-buffer write
support, directory and link handling, all visible from the /proc namespace.

The vfile support exposes four filesystem object types:

e snapshot-driven file (struct xnvfile_snapshot). This is commonly used to export real-time object
states via the /proc filesystem. To minimize the latency involved in protecting the vfile routines from
changes applied by real-time code on such objects, a snapshot of the data to output is first taken
under proper locking, before the collected data is formatted and sent out in a lockless manner.

Because a large number of records may have to be output, the data collection phase is not strictly atomic
as a whole, but only protected at record level. The vfile implementation can be notified of updates to the
underlying data set, and restart the collection from scratch until the snapshot is fully consistent.

e regular sequential file (struct xnvfile_regular). This is basically an encapsulated sequential file
object as available from the host kernel (i.e. seq_file), with a few additional features to make it
more handy in a Xenomai environment, like implicit locking support and shortened declaration for
simplest, single-record output.

e virtual link (struct xnvfile_link). This is a symbolic link feature integrated with the vfile semantics.
The link target is computed dynamically at creation time from a user-given helper routine.

e virtual directory (struct xnvfile_directory). A directory object, which can be used to create a hierar-
chy for ordering a set of vfile objects.

4.15.2 Function Documentation
4.15.2.1 void xnvfile_destroy ( struct xnvfile  vfile )

Removes a virtual file entry.

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen



4.15 Virtual file services 97

Parameters

| vfile | A pointer to the virtual file descriptor to remove.

4.15.2.2 ssize_t xnvfile_get_blob ( struct xnvfile_input = input, void * data, size_t size )

Read in a data bulk written to the vfile.

When writing to a vfile, the associated store() handler from the snapshot-driven vfile or regular vfile is
called, with a single argument describing the input data. xnvfile_get_blob() retrieves this data as an
untyped binary blob, and copies it back to the caller’s buffer.

Parameters
input | A pointer to the input descriptor passed to the store() handler.
data | The address of the destination buffer to copy the input data to.
size | The maximum number of bytes to copy to the destination buffer. If size is larger than
the actual data size, the input is truncated to size.
Returns

The number of bytes read and copied to the destination buffer upon success. Otherwise, a negative
error code is returned:

e -EFAULT indicates an invalid source buffer address.

Referenced by xnvfile_get_integer(), and xnvfile_get_string().

415.2.3 ssize_t xnvfile_get_integer ( struct xnvfile_input * input, long * valp )

Evaluate the string written to the vfile as a long integer.

When writing to a vfile, the associated store() handler from the snapshot-driven vfile or regular vfile is
called, with a single argument describing the input data. xnvfile_get_integer() retrieves and interprets
this data as a long integer, and copies the resulting value back to valp.

The long integer can be expressed in decimal, octal or hexadecimal bases depending on the prefix

found.
Parameters
input | A pointer to the input descriptor passed to the store() handler.
valp | The address of a long integer variable to receive the value.
Returns

The number of characters read while evaluating the input as a long integer upon success. Other-
wise, a negative error code is returned:

e -EINVAL indicates a parse error on the input stream; the written text cannot be evaluated as a long

integer.

e -EFAULT indicates an invalid source buffer address.

References xnvfile_get_blob().

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen




98 Module Documentation

4.15.2.4 ssize_t xnvfile_get_string ( struct xnvfile_input = input, char = s, size_t maxlen )

Read in a C-string written to the vfile.

When writing to a vfile, the associated store() handler from the snapshot-driven vfile or regular vfile is
called, with a single argument describing the input data. xnvfile_get_string() retrieves this data as a
null-terminated character string, and copies it back to the caller’s buffer.

Parameters

input | A pointer to the input descriptor passed to the store() handler.

s | The address of the destination string buffer to copy the input data to.

maxlen | The maximum number of bytes to copy to the destination buffer, including the ending
null character. If maxlen is larger than the actual string length, the input is truncated
to maxlen.

Returns

The number of characters read and copied to the destination buffer upon success. Otherwise, a
negative error code is returned:

e -EFAULT indicates an invalid source buffer address.

References xnvfile_get_blob().

4.15.2.,5 int xnvfile_init_dir ( const char = name, struct xnvfile_directory = vdir, struct xnvfile_directory = parent )
Initialize a virtual directory entry.

Parameters

name | The name which should appear in the pseudo-filesystem, identifying the vdir entry.

vdir | A pointer to the virtual directory descriptor to initialize.

parent | A pointer to a virtual directory descriptor standing for the parent directory of the new
vdir. If NULL, the /proc root directory will be used. /proc/xenomai is mapped on the
globally available nkvfroot vdir.

Returns

0 is returned on success. Otherwise:

e -ENOMEM is returned if the virtual directory entry cannot be created in the /proc hierarchy.

4.15.2.6 int xnvfile_init_link ( const char * from, const char = to, struct xnvfile_link = vlink, struct xnvfile_directory = parent )
Initialize a virtual link entry.

Parameters

from | The name which should appear in the pseudo-filesystem, identifying the vlink entry.

to | The target file name which should be referred to symbolically by name.

vlink | A pointer to the virtual link descriptor to initialize.

parent | A pointer to a virtual directory descriptor standing for the parent directory of the new
vlink. If NULL, the /proc root directory will be used. /proc/xenomai is mapped on the
globally available nkvfroot vdir.

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen



4.15 Virtual file services 99

Returns

0 is returned on success. Otherwise:

e -ENOMEM is returned if the virtual link entry cannot be created in the /proc hierarchy.

4.15.2.7 int xnvfile_init_regular ( const char * name, struct xnvfile_regular > vfile, struct xnvfile_directory » parent )
Initialize a regular vfile.

Parameters

name | The name which should appear in the pseudo-filesystem, identifying the vfile entry.

vfile | A pointer to a vfile descriptor to initialize from. The following fields in this structure
should be filled in prior to call this routine:

e .privsz is the size (in bytes) of the private data area to be reserved in the vfile iterator. A NULL
value indicates that no private area should be reserved.

e entry.lockops is a pointer to a lockingdescriptor”, defining the lock and unlock operations for the
vfile. This pointer may be left to NULL, in which case no locking will be applied.

e .0ps is a pointer to an operation descriptor.

Parameters

parent | A pointer to a virtual directory descriptor; the vfile entry will be created into this
directory. If NULL, the /proc root directory will be used. /proc/xenomai is mapped on
the globally available nkvfroot vdir.

Returns

0 is returned on success. Otherwise:

e -ENOMEM is returned if the virtual file entry cannot be created in the /proc hierarchy.

4.15.2.8 int xnvfile_init_snapshot ( const char = name, struct xnvfile_snhapshot = vfile, struct xnvfile_directory = parent )
Initialize a snapshot-driven vfile.

Parameters

name | The name which should appear in the pseudo-filesystem, identifying the vfile entry.

vfile | A pointer to a vfile descriptor to initialize from. The following fields in this structure
should be filled in prior to call this routine:

e .privsz is the size (in bytes) of the private data area to be reserved in the vfile iterator. A NULL
value indicates that no private area should be reserved.

e .datasz is the size (in bytes) of a single record to be collected by the next() handler from the
operation descriptor.

e .tag is a pointer to a mandatory vfile revision tag structure (struct xnvfile_rev_tag). This tag will be
monitored for changes by the vfile core while collecting data to output, so that any update detected

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen



100 Module Documentation

will cause the current snapshot data to be dropped, and the collection to restart from the beginning.
To this end, any change to the data which may be part of the collected records, should also invoke
xnvfile_touch() on the associated tag.

e entry.lockops is a pointer to a lockingdescriptor”, defining the lock and unlock operations for the
vfile. This pointer may be left to NULL, in which case the operations on the nucleus lock (i.e.
nklock) will be used internally around calls to data collection handlers (see operation descriptor).

e .0ps is a pointer to an operation descriptor.

Parameters

parent | A pointer to a virtual directory descriptor; the vfile entry will be created into this
directory. If NULL, the /proc root directory will be used. /proc/xenomai is mapped on
the globally available nkvfroot vdir.

Returns

0 is returned on success. Otherwise:
e -ENOMEM is returned if the virtual file entry cannot be created in the /proc hierarchy.

References xnvfile_snapshot_ops::store.

4.15.3 Variable Documentation
4.15.3.1 struct xnvfile_directory nkvfroot

Xenomai vfile root directory.

This vdir maps the /proc/xenomai directory. It can be used to create a hierarchy of Xenomai-related
vfiles under this root.

4.15.3.2 struct xnvfile_directory nkvfroot

Xenomai vfile root directory.

This vdir maps the /proc/xenomai directory. It can be used to create a hierarchy of Xenomai-related
vfiles under this root.

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen



4.16 HAL. 101

416 HAL.

Generic Adeos-based hardware abstraction layer.

Files

file hal.c
Adeos-based Real-Time Abstraction Layer for ARM.
file hal.c
Adeos-based Real-Time Abstraction Layer for the Blackfin architecture.
file hal.c
Generic Real-Time HAL.
file hal.c
Adeos-based Real-Time Abstraction Layer for the NIOS2 architecture.
file hal.c
Adeos-based Real-Time Abstraction Layer for PowerPC.
file hal.c
Adeos-based Real-Time Abstraction Layer for the SuperH architecture.
file hal-common.c
Adeos-based Real-Time Abstraction Layer for x86.
file hal_32.c
Adeos-based Real-Time Abstraction Layer for x86.
file hal_64.c
Adeos-based Real-Time Abstraction Layer for x86_64.
file smi.c
SMI workaround for x86.

Functions

int rthal_timer_request (void(+ick handler)(void), void(xmode_emul)(enum clock event_mode
mode, struct clock_event_device +cdev), int(xtick_emul)(unsigned long delay, struct clock_event_-
device *cdev), int cpu)

Grab the hardware timer.
void rthal_timer_release (int cpu)

Release the hardware timer.
int rthal_irg_host_request (unsigned irq, rthal_irq_host_handler_t handler, char *name, void *dev-
_id)

Install a shared Linux interrupt handler.
int rthal_irg_host_release (unsigned irq, void =dev_id)

Uninstall a shared Linux interrupt handler.
int rthal_irg_enable (unsigned irq)

Enable an interrupt source.
int rthal_irg_disable (unsigned irq)

Disable an interrupt source.
int rthal_irg_request (unsigned irq, rthal_irg_handler_t handler, rthal_irq_ackfn_t ackfn, void
+cookie)

Install a real-time interrupt handler.
int rthal_irg_release (unsigned irq)

Uninstall a real-time interrupt handler.
rthal_trap_handler_t rthal_trap_catch (rthal_trap_handler_t handler)

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen



102 Module Documentation

Installs a fault handler.
e int rthal_apc_alloc (const char xname, void(+handler)(void =cookie), void *cookie)

Allocate an APC slot.
¢ void rthal_apc_free (int apc)
Releases an APC slot.

4.16.1 Detailed Description

Generic Adeos-based hardware abstraction layer. x86_64-specific HAL services.
i386-specific HAL services.

SuperH-specific HAL services.

PowerPC-specific HAL services.

NIOS2-specific HAL services.

Blackfin-specific HAL services.

ARM-specific HAL services.

4.16.2 Function Documentation
4.16.2.1 int rthal_apc_alloc ( const char » name, void(x)(void *cookie) handler, void * cookie )

Allocate an APC slot.

APC is the acronym for Asynchronous Procedure Call, a mean by which activities from the Xenomai
domain can schedule deferred invocations of handlers to be run into the Linux domain, as soon as
possible when the Linux kernel gets back in control. Up to BITS_PER_LONG APC slots can be active
at any point in time. APC support is built upon Adeos’s virtual interrupt support.

The HAL guarantees that any Linux kernel service which would be callable from a regular Linux interrupt
handler is also available to APC handlers.

Parameters

name | is a symbolic name identifying the APC which will get reported through the
/proc/xenomai/apc interface. Passing NULL to create an anonymous APC is allowed.

handler | The address of the fault handler to call upon exception condition. The handle will be
passed the cookie value unmodified.

cookie | A user-defined opaque cookie the HAL will pass to the APC handler as its sole argu-
ment.

Returns

an valid APC id. is returned upon success, or a negative error code otherwise:
e -EINVAL is returned if handler is invalid.
e -EBUSY is returned if no more APC slots are available.

Environments:

This service can be called from:

e Linux domain context.

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen



4.16 HAL. 103

4.16.2.2 int rthal_apc_free ( int apc )

Releases an APC slot.

This service deallocates an APC slot obtained by rthal_apc_alloc().

Parameters

apc | The APC id. to release, as returned by a successful call to the rthal_apc_alloc()
service.

Environments:

This service can be called from:

e Any domain context.

4.16.2.3 int rthal_irq_disable ( unsigned irq )

Disable an interrupt source.

Disables an interrupt source at PIC level. After this call has returned, no more IRQs from the given
source will be allowed, until the latter is enabled again using rthal_irg_enable().

Parameters

irg | The interrupt source to disable. This value is architecture-dependent.

Returns

0 is returned upon success. Otherwise:
e -EINVAL is returned if irg is invalid.

e Other error codes might be returned in case some internal error happens at the Adeos level. Such
error might caused by conflicting Adeos requests made by third-party code.

Environments:

This service can be called from:

e Any domain context.

4.16.2.4 int rthal_irq_enable ( unsigned irq )

Enable an interrupt source.

Enables an interrupt source at PIC level. Since Adeos masks and acknowledges the associated interrupt
source upon IRQ receipt, this action is usually needed whenever the HAL handler does not propagate
the IRQ event to the Linux domain, thus preventing the regular Linux interrupt handling code from re-
enabling said source. After this call has returned, IRQs from the given source will be enabled again.

Parameters

| irg | The interrupt source to enable. This value is architecture-dependent.

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen



104 Module Documentation

Returns

0 is returned upon success. Otherwise:
e -EINVAL is returned if irqg is invalid.

e Other error codes might be returned in case some internal error happens at the Adeos level. Such
error might caused by conflicting Adeos requests made by third-party code.

Environments:

This service can be called from:

e Any domain context.

4.16.2.5 int rthal_irq_host_release ( unsigned irq, void » dev_id )

Uninstall a shared Linux interrupt handler.

Uninstalls a shared interrupt handler from the Linux domain for the given interrupt source. The handler
is removed from the existing list of Linux handlers for this interrupt source.

Parameters

irg | The interrupt source to detach the shared handler from. This value is architecture-
dependent.

dev_id | is a valid device id, identical in essence to the one requested by the free_irq() ser-
vice provided by the Linux kernel. This value will be used to locate the handler to
remove from the chain of existing Linux handlers for the given interrupt source. This
parameter must match the device id. passed to rthal_irg_host_request() for the same
handler instance.

Returns

0 is returned upon success. Otherwise:
e -EINVAL is returned if irg is invalid.

Environments:

This service can be called from:

e Linux domain context.

4.16.2.6 int rthal_irq_host_request ( unsigned irg, rthal_irq_host_handler_t handler, char » name, void = dev_id )

Install a shared Linux interrupt handler.

Installs a shared interrupt handler in the Linux domain for the given interrupt source. The handler is
appended to the existing list of Linux handlers for this interrupt source.

Parameters

irg | The interrupt source to attach the shared handler to. This value is architecture-
dependent.

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen




4.16 HAL. 105

handler | The address of a valid interrupt service routine. This handler will be called each
time the corresponding IRQ is delivered, as part of the chain of existing regular Linux
handlers for this interrupt source. The handler prototype is the same as the one
required by the request_irq() service provided by the Linux kernel.

name | is a symbolic name identifying the handler which will get reported through the
/proc/interrupts interface.

dev_id | is a unique device id, identical in essence to the one requested by the request_irq()
service.

Returns

0 is returned upon success. Otherwise:
e -EINVAL is returned if irqg is invalid or handler is NULL.

Environments:

This service can be called from:

e Linux domain context.

4.16.2.7 int rthal_irq_release ( unsigned irq )

Uninstall a real-time interrupt handler.

Uninstalls an interrupt handler previously attached using the rthal_irq_request() service.

Parameters

irg | The hardware interrupt channel to uninstall a handler from. This value is architecture-
dependent.

Returns

0 is returned upon success. Otherwise:
e -EINVAL is returned if irqg is invalid.

e Other error codes might be returned in case some internal error happens at the Adeos level. Such
error might caused by conflicting Adeos requests made by third-party code.

Environments:

This service can be called from:
e Any domain context.

Referenced by rthal_timer_release().

4.16.2.8 int rthal_irq_request ( unsigned irq, rthal_irq_handler_t handler, rthal_irq_ackfn_t ackfn, void = cookie )

Install a real-time interrupt handler.

Installs an interrupt handler for the specified IRQ line by requesting the appropriate Adeos virtualization
service. The handler is invoked by Adeos on behalf of the Xenomai domain context. Once installed, the
HAL interrupt handler will be called prior to the regular Linux handler for the same interrupt source.

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen



106

Module Documentation

Parameters

irq

The hardware interrupt channel to install a handler on. This value is architecture-
dependent.

handler

The address of a valid interrupt service routine. This handler will be called each time
the corresponding IRQ is delivered, and will be passed the cookie value unmodified.

ackfn

The address of an optional interrupt acknowledge routine, aimed at replacing the
one provided by Adeos. Only very specific situations actually require to override the
default Adeos setting for this parameter, like having to acknowledge non-standard
PIC hardware. If ackfnis NULL, the default Adeos routine will be used instead.

cookie

A user-defined opaque cookie the HAL will pass to the interrupt handler as its sole
argument.

Returns

0 is returned upon success. Otherwise:

e -EBUSY is returned if an interrupt handler is already installed. rthal_irg_release() must be issued
first before a handler is installed anew.

e -EINVAL is returned if irg is invalid or handler is NULL.

e Other error codes might be returned in case some internal error happens at the Adeos level. Such
error might caused by conflicting Adeos requests made by third-party code.

Environments:

This service can be called from:

e Any domain context.

Referenced by rthal_timer_request().

4.16.2.9 void rthal_timer_release ( int cpu )

Release the hardware timer.

Releases the hardware timer, thus reverting the effect of a previous call to rthal_timer_request(). In case
the timer hardware is shared with Linux, a periodic setup suitable for the Linux kernel will be reset.

Parameters

| cpu | The CPU number the timer was grabbed from.

Environments:

This service can be called from:

e Linux domain context.

References rthal_irq_release().

4.16.2.10 int rthal_timer_request ( void(x)(void) tick_handler, void(+)(enum clock_event_mode mode, struct clock_event_device
xcdev) mode_emul, int()(unsigned long delay, struct clock_event_device *cdev) tick_emul, int cpu )

Grab the hardware timer.

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen




4.16 HAL. 107

rthal_timer_request() grabs and tunes the hardware timer in oneshot mode in order to clock the master
time base.

A user-defined routine is registered as the clock tick handler. This handler will always be invoked on
behalf of the Xenomai domain for each incoming tick.

Hooks for emulating oneshot mode for the tick device are accepted when CONFIG_GENERIC_CLOC-
KEVENTS is defined for the host kernel. Host tick emulation is a way to share the clockchip hardware
between Linux and Xenomai, when the former provides support for oneshot timing (i.e. high resolution
timers and no-HZ scheduler ticking).

Parameters

tick_handler | The address of the Xenomai tick handler which will process each incoming tick.

mode_emul | The optional address of a callback to be invoked upon mode switch of the host tick
device, notified by the Linux kernel. This parameter is only considered whenever
CONFIG_GENERIC_CLOCKEVENTS is defined.

tick_emul | The optional address of a callback to be invoked upon setup of the next shot date for
the host tick device, notified by the Linux kernel. This parameter is only considered
whenever CONFIG_GENERIC_CLOCKEVENTS is defined.

cpu | The CPU number to grab the timer from.

Returns

a positive value is returned on success, representing the duration of a Linux periodic tick expressed
as a count of nanoseconds; zero should be returned when the Linux kernel does not undergo
periodic timing on the given CPU (e.g. oneshot mode). Otherwise:

e -EBUSY is returned if the hardware timer has already been grabbed. rthal_timer_request() must
be issued before rthal_timer_request() is called again.

e -ENODEV is returned if the hardware timer cannot be used. This situation may occur after the ker-
nel disabled the timer due to invalid calibration results; in such a case, such hardware is unusable
for any timing duties.

Environments:

This service can be called from:
e Linux domain context.

References rthal_irq_request().

4.16.2.11 int rthal_trap_catch ( rthal_trap_handler_t handler )

Installs a fault handler.

The HAL attempts to invoke a fault handler whenever an uncontrolled exception or fault is caught at
machine level. This service allows to install a user-defined handler for such events.

Parameters

handler | The address of the fault handler to call upon exception condition. The handler is
passed the address of the low-level information block describing the fault as passed
by Adeos. lts layout is implementation-dependent.

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen



108 Module Documentation

Returns

The address of the fault handler previously installed.

Environments:

This service can be called from:

e Any domain context.

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen



4.17 Sched

109

4.17 Sched

Files

e file sched.h

Scheduler interface header.
e file sched-idle.c

Idle scheduling class implementation (i.e. Linux placeholder).
e file sched-rt.c

Common real-time scheduling class implementation (FIFO + RR)
e file sched-sporadic.c

POSIX SCHED_SPORADIC scheduling class.
e file sched-tp.c

Temporal partitioning (typical of IMA systems).
e file sched.c
Data Structures

e struct xnsched
Scheduling information structure.

Typedefs

e typedef struct xnsched xnsched_t
Scheduling information structure.

Functions

e static void xnsched_rotate (struct xnsched =sched, struct xnsched_class *sched_class, const union

xnsched_policy_param =sched_param)
Rotate a scheduler runqueue.

4.17.1 Detailed Description

4.17.2 Function Documentation

4.17.2.1 void xnsched_rotate ( struct xnsched = sched, struct xnsched_class * sched_class, const union

xnsched_policy_param = param ) [inline], [static]

Rotate a scheduler runqueue.

The specified scheduling class is requested to rotate its runqueue for the given scheduler. Rotation is

performed according to the scheduling parameter specified by sched _param.

Note

The nucleus supports round-robin scheduling for the members of the RT class.

Parameters

sched | The per-CPU scheduler hosting the target scheduling class.

sched_class | The scheduling class which should rotate its runqueue.

Tha cehadul r nroniAina ratatine |

Nnaram Nna naramata nfarmatio
parartt He-—SChctumygpararmtter—providmgTotatuOr— o anon

Generated on Sun Oct 133@jl8d 9:13:18 for Xenomai nanokernel API by Doxygen




110 Module Documentation

Environments:

This service should be called from:

e Kernel-based task
e Interrupt service routine

e User-space task (primary mode only)

Rescheduling: never.

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen



Chapter 5

Data Structure Documentation

5.1 xnpod Struct Reference

Real-time pod descriptor.

Collaboration diagram for xnpod:

xnsched

+

sched

|
xnpod

Data Fields

xnflags_t status

xnsched_t sched [XNARCH_NR_CPUS]
xnqueue_t threadq

xnqueue_t tstartq

xnqueue_t tswitchq

xnqueue_t tdeleteq

atomic_counter_t timerlck

xntimer_t tslicer

int tsliced

int refcnt

5.1.1 Detailed Description

Real-time pod descriptor.

The source of all Xenomai magic.


$structxnsched.html

112 Data Structure Documentation

5.1.2 Field Documentation

5.1.2.1 int xnpod::refent

Reference count.

Referenced by xnpod_init().

5.1.2.2 xnsched_t xnpod::sched XNARCH_NR_CPUS]
Per-cpu scheduler slots.
Referenced by xnpod_init().

5.1.2.3 xnflags_t xnpod::status

Status bitmask.

Referenced by xnpod_init().

5.1.2.4 xnqueue_t xnpod::tdeleteq
Thread delete hook queue.
Referenced by xnpod_init().

5.1.2.5 xnqueue_t xnpod::threadq

All existing threads.

Referenced by xnpod_init().

5.1.2.6 atomic_counter_t xnpod::timerick
Timer lock depth.

Referenced by xnpod_init().

5.1.2.7 int xnpod::tsliced

Number of threads using the slicer
Referenced by xnpod_init().

5.1.2.8 xntimer_t xnpod::tslicer
Time-slicing timer for aperiodic mode
Referenced by xnpod_init().

5.1.2.9 xnqueue_t xnpod::tstartq

Thread start hook queue.

Referenced by xnpod_init().

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen



5.2 xnsched Struct Reference

113

5.1.2.10 xnqueue_t xnpod::tswitchq

Thread switch hook queue.

Referenced by xnpod_init().

The documentation for this struct was generated from the following file:

¢ include/nucleus/pod.h

5.2 xnsched Struct Reference

Scheduling information structure.

Data Fields

xnflags_t status
xnflags_t Iflags

struct xnthread = curr
struct xnsched rt rt
volatile unsigned inesting
struct xntimer htimer
struct xnthread rootcb

5.2.1 Detailed Description

Scheduling information structure.

5.2.2 Field Documentation
5.2.2.1 struct xnthread= xnsched::curr

Current thread.

Referenced by xnpod_delete_thread(), xnpod_resume_thread(), and xnpod_suspend_thread().

5.2.2.2 struct xntimer xnsched::htimer

Host timer.

Referenced by xnpod_enable_timesource(), and xntimer_tick_aperiodic().

5.2.2.3 volatile unsigned xnsched::inesting

Interrupt nesting level.

5.2.2.4 xnflags_t xnsched::Iflags

Scheduler specific local flags bitmask.

Referenced by xnpod_delete_thread(), xnpod_schedule(), xnpod_suspend_thread(), and xntimer_tick-

_aperiodic().

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen



114 Data Structure Documentation

5.2.2.5 struct xnthread xnsched::rootcb

Root thread control block.

Referenced by xnpod_init().

5.2.2.6 struct xnsched_rt xnsched::rt

Context of built-in real-time class.

5.2.2.7 xnflags_t xnsched::status

Scheduler specific status bitmask.
Referenced by xnpod_delete_thread(), xnpod_schedule(), and xntimer_tick_aperiodic().

The documentation for this struct was generated from the following file:

e include/nucleus/sched.h

5.3 xnthread_info Struct Reference

Structure containing thread information.

Data Fields

e unsigned long state
Thread state,.
e int bprio
Base priority.
e int cprio
Current priority.
e intcpu
CPU the thread currently runs on.
e unsigned long affinity

Thread’s CPU affinity.
e unsigned long long relpoint

Time of next release.
¢ unsigned long long exectime

Execution time in primary mode in nanoseconds.
e unsigned long modeswitches

Number of primary->secondary mode switches.
e unsigned long ctxswitches

Number of context switches.
¢ unsigned long pagefaults

Number of triggered page faults.
e char name [XNOBJECT_NAME_LEN]

Symbolic name assigned at creation.

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen



5.3 xnthread_info Struct Reference

5.3.1 Detailed Description

Structure containing thread information.

5.3.2 Field Documentation

5.3.2.1 unsigned long xnthread_info::affinity

Thread’s CPU affinity.

5.3.2.2 int xnthread_info::bprio

Base priority.

5.3.2.3 int xnthread_info::cprio

Current priority.

May change through Priority Inheritance.
5.3.2.4 int xnthread_info::cpu

CPU the thread currently runs on.

5.3.2.5 unsigned long xnthread_info::ctxswitches

Number of context switches.

5.3.2.6 unsigned long long xnthread_info::exectime

Execution time in primary mode in nanoseconds.

5.3.2.7 unsigned long xnthread_info::modeswitches

Number of primary->secondary mode switches.

5.3.2.8 char xnthread_info::name[XNOBJECT_NAME_LEN]

Symbolic name assigned at creation.

5.3.2.9 unsigned long xnthread_info::pagefaults

Number of triggered page faults.

5.3.2.10 unsigned long long xnthread_info::relpoint

Time of next release.

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen



116 Data Structure Documentation

5.3.2.11 unsigned long xnthread_info::state
Thread state,.

See Also

Thread state flags.

The documentation for this struct was generated from the following file:

e include/nucleus/thread.h

5.4 xnvfile_lock_ops Struct Reference

Vfile locking operations.

Data Fields

e int(x get )(struct xnvfile =vfile)
e void(* put )(struct xnvfile =vfile)

5.4.1 Detailed Description

Vfile locking operations.

This structure describes the operations to be provided for implementing locking support on vfiles. They
apply to both snapshot-driven and regular vfiles.

5.4.2 Field Documentation
5.4.2.1 int(+ xnvfile_lock_ops::get)(struct xnvfile xvfile)
This handler should grab the desired lock.

Parameters

| vfile | A pointer to the virtual file which needs locking.

Returns

zero should be returned if the call succeeds. Otherwise, a negative error code can be returned;
upon error, the current vfile operation is aborted, and the user-space caller is passed back the error
value.

5.4.2.2 void(x xnvfile_lock_ops::put)(struct xnvfile vfile)
This handler should release the lock previously grabbed by the get() handler.

Parameters

| vfile | A pointer to the virtual file which currently holds the lock to release.

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen



5.5 xnvfile_regular_iterator Struct Reference

117

The documentation for this struct was generated from the following file:

e include/nucleus/vfile.h

5.5 xnvfile_regular_iterator Struct Reference

Regular vfile iterator.

Data Fields

loff_t pos
Current record position while iterating.
struct seq_file * seq

Backlink to the host sequential file supporting the Vfile.
struct xnvfile_regular = vfile

Backlink to the vfile being read.
char private [0]

Start of private area.

5.5.1 Detailed Description

Regular vfile iterator.

This structure defines an iterator over a regular vfile.

5.5.2 Field Documentation
5.5.2.1 loff_t xnvfile_regular_iterator::pos

Current record position while iterating.

5.5.2.2 char xnvfile_regular_iterator::private[0]

Start of private area.

Use xnvfile_iterator_priv() to address it.

5.5.2.3 struct seq_filex xnvfile_regular_iterator::seq

Backlink to the host sequential file supporting the vfile.

5.5.2.4 struct xnvfile_regular+ xnvfile_regular_iterator::vfile

Backlink to the vfile being read.

The documentation for this struct was generated from the following file:

e include/nucleus/vfile.h

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen



118 Data Structure Documentation

5.6 xnvfile_regular_ops Struct Reference

Regular vfile operation descriptor.

Data Fields

int(+ rewind )(struct xnvfile_regular_iterator =it)

void #(* begin )(struct xnvfile_regular_iterator =it)

void =(* next )(struct xnvfile_regular_iterator =it)

void(* end )(struct xnvfile_regular_iterator =it)

int(+ show )(struct xnvfile_regular_iterator =it, void =data)
ssize_t(+ store )(struct xnvfile_input =input)

5.6.1 Detailed Description

Regular vfile operation descriptor.

This structure describes the operations available with a regular vfile. It defines handlers for sending back
formatted kernel data upon a user-space read request, and for obtaining user data upon a user-space
write request.

5.6.2 Field Documentation
5.6.2.1 void=(+ xnvfile_regular_ops::begin)(struct xnvfile_regular_iterator =it)

This handler should prepare for iterating over the records upon a read request, starting from the specified
position.

Parameters
it | A pointer to the current vfile iterator. On entry, it->pos is set to the (0-based) position
of the first record to output. This handler may be called multiple times with different
position requests.
Returns

A pointer to the first record to format and output, to be passed to the show() handler as its data
parameter, if the call succeeds. Otherwise:

e NULL in case no record is available, in which case the read operation will terminate immediately
with no output.

e VFILE_SEQ_START, a special value indicating that the show() handler should receive a NULL
data pointer first, in order to output a header.

e ERR_PTR(errno), where errno is a negative error code; upon error, the current operation will be
aborted immediately.

Note

This handler is optional; if none is given in the operation descriptor (i.e. NULL value), the
show() handler() will be called only once for a read operation, with a NULL data parameter. This
particular setting is convenient for simple regular vfiles having a single, fixed record to output.

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen



5.6 xnvfile_regular_ops Struct Reference 119

5.6.2.2 void(+ xnvfile_regular_ops::end)(struct xnvfile_regular_iterator ~it)
This handler is called after all records have been output.

Parameters

| it | A pointer to the current vfile iterator.

Note

This handler is optional and the pointer may be NULL.

5.6.2.3 void=(+ xnvfile_regular_ops::next)(struct xnvfile_regular_iterator xit)
This handler should return the address of the next record to format and output by the show()handler".

Parameters

~

it | A pointer to the current vfile iterator. On entry, it->pos is set to the (0-based) position

of the next record to output.

Returns

A pointer to the next record to format and output, to be passed to the show() handler as its data
parameter, if the call succeeds. Otherwise:

e NULL in case no record is available, in which case the read operation will terminate immediately
with no output.

e ERR_PTR(errno), where errno is a negative error code; upon error, the current operation will be
aborted immediately.

Note

This handler is optional; if none is given in the operation descriptor (i.e. NULL value), the read
operation will stop after the first invocation of the show() handler.

5.6.2.4 int(+ xnvfile_regular_ops::rewind)(struct xnvfile_regular_iterator ~it)
This handler is called only once, when the virtual file is opened, before the begin() handler is invoked.

Parameters

| it | A pointer to the vfile iterator which will be used to read the file contents.

Returns

Zero should be returned upon success. Otherwise, a negative error code aborts the operation, and
is passed back to the reader.

Note

This handler is optional. It should not be used to allocate resources but rather to perform consistency
checks, since no closure call is issued in case the open sequence eventually fails.

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen



120 Data Structure Documentation

5.6.2.5 int(x xnvfile_regular_ops::show)(struct xnvfile_regular_iterator ~it, void =data)

This handler should format and output a record.

xnvfile_printf(), xnvfile_write(), xnvfile_puts() and xnvfile_putc() are available to format and/or emit the
output. All routines take the iterator argument it as their first parameter.

Parameters
it | A pointer to the current vfile iterator.
data | A pointer to the record to format then output. The first call to the handler may receive
a NULL data pointer, depending on the presence and/or return of a hander; the show
handler should test this special value to output any header that fits, prior to receiving
more calls with actual records.
Returns

zero if the call succeeds, also indicating that the handler should be called for the next record if any.
Otherwise:

e A negative error code. This will abort the output phase, and return this status to the reader.

e VFILE_SEQ_SKIP, a special value indicating that the current record should be skipped and will not
be output.

5.6.2.6 ssize_t(x xnvfile_regular_ops::store)(struct xnvfile_input xinput)

This handler receives data written to the vfile, likely for updating some kernel setting, or triggering any
other action which fits. This is the only handler which deals with the write-side of a vfile. It is called when
writing to the /proc entry of the vfile from a user-space process.

The input data is described by a descriptor passed to the handler, which may be subsequently passed to
parsing helper routines. For instance, xnvfile_get_string() will accept the input descriptor for returning the
written data as a null-terminated character string. On the other hand, xnvfile_get_integer() will attempt
to return a long integer from the input data.

Parameters

input | A pointer to an input descriptor. It refers to an opaque data from the handler’s stand-
point.

Returns

the number of bytes read from the input descriptor if the call succeeds. Otherwise, a negative error
code. Return values from parsing helper routines are commonly passed back to the caller by the
store() handler.

Note

This handler is optional, and may be omitted for read-only vfiles.

The documentation for this struct was generated from the following file:

e include/nucleus/vfile.h

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen



5.7 xnvfile_rev_tag Struct Reference 121

5.7 xnvfile_rev_tag Struct Reference

Snapshot revision tag.

Data Fields

e intrev
Current revision number.

5.7.1 Detailed Description

Snapshot revision tag.

This structure defines a revision tag to be used with snapshot-driven vfiles.
5.7.2 Field Documentation

5.7.2.1 int xnvfile_rev_tag::rev

Current revision number.

The documentation for this struct was generated from the following file:

e include/nucleus/vfile.h

5.8 xnvfile_snapshot Struct Reference

Snapshot vfile descriptor.

Collaboration diagram for xnvfile_snapshot:

xnvfile_snapshot_ops xnvfile_rev_tag

% A

\ ops / tag
\ /

xnvfile_snapshot

5.8.1 Detailed Description

Snapshot vfile descriptor.

This structure describes a snapshot-driven vfile. Reading from such a vfile involves a preliminary data
collection phase under lock protection, and a subsequent formatting and output phase of the collected
data records. Locking is done in a way that does not increase worst-case latency, regardless of the
number of records to be collected for output.

The documentation for this struct was generated from the following file:

e include/nucleus/vfile.h

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen


$structxnvfile__snapshot__ops.html
$structxnvfile__rev__tag.html

122 Data Structure Documentation

5.9 xnvfile_snapshot_iterator Struct Reference

Snapshot-driven vfile iterator.

Collaboration diagram for xnvfile_snapshot_iterator:

xnvfile_snapshot_ops xnvfile_rev_tag
\. Ops / tag
AN /

xnvfile_snapshot

*

vfile

|
xnvfile_snapshot_iterator

Data Fields

e int nrdata

Number of collected records.
caddr_t databuf

Address of record buffer.
struct seq_file * seq

Backlink to the host sequential file supporting the Vfile.
struct xnvfile_snapshot = vfile

Backlink to the vfile being read.
void(+ endfn )(struct xnvfile_snapshot_iterator =it, void +buf)

Buffer release handler.
char private [0]

Start of private area.

5.9.1 Detailed Description

Snapshot-driven vfile iterator.

This structure defines an iterator over a snapshot-driven vfile.

5.9.2 Field Documentation
5.9.2.1 caddr_t xnvfile_snapshot_iterator::databuf

Address of record buffer.

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen


$structxnvfile__snapshot.html
$structxnvfile__snapshot__ops.html
$structxnvfile__rev__tag.html

5.10 xnvfile_snapshot_ops Struct Reference 123

5.9.2.2 void(+ xnvfile_snapshot_iterator::endfn)(struct xnvfile_snapshot_iterator «it, void =buf)

Buffer release handler.

5.9.2.3 int xnvfile_snapshot_iterator::nrdata

Number of collected records.

5.9.2.4 char xnvfile_snapshot_iterator::private[0]

Start of private area.

Use xnvfile_iterator_priv() to address it.

5.9.2.5 struct seq_filex xnvfile_snapshot_iterator::seq

Backlink to the host sequential file supporting the vfile.

5.9.2.6 struct xnvfile_snapshot: xnvfile_snapshot_iterator::vfile

Backlink to the vfile being read.

The documentation for this struct was generated from the following file:

e include/nucleus/vfile.h

5.10 xnvfile_snapshot_ops Struct Reference

Snapshot vfile operation descriptor.

Data Fields

e int(x rewind )(struct xnvfile_snapshot_iterator =it)

e void #(* begin )(struct xnvfile_snapshot_iterator =it)

e void(* end )(struct xnvfile_snapshot_iterator =it, void =buf)
e int(x next )(struct xnvfile_snapshot_iterator =it, void data)
e int(x show )(struct xnvfile_snapshot_iterator =it, void *data)
e ssize_t(+ store )(struct xnvfile_input =input)

5.10.1 Detailed Description

Snapshot vfile operation descriptor.

This structure describes the operations available with a snapshot-driven vfile. It defines handlers for
returning a printable snapshot of some Xenomai object contents upon a user-space read request, and
for updating this object upon a user-space write request.

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen



124

Data Structure Documentation

5.10.2 Field Documentation

5.10.2.1 voidx(= xnvfile_snapshot_ops::begin)(struct xnvfile_snapshot_iterator ~it)

This handler should allocate the snapshot buffer to hold records during the data collection phase. When
specified, all records collected via the next()handler" will be written to a cell from the memory area
returned by begin().

Parameters

it | A pointer to the current snapshot iterator.

Returns

A pointer to the record buffer, if the call succeeds. Otherwise:

e NULL in case of allocation error. This will abort the data collection, and return -ENOMEM to the
reader.

e VFILE_SEQ_EMPTY, a special value indicating that no record will be output. In such a case,
the next() handler will not be called, and the data collection will stop immediately. However, the
show() handler will still be called once, with a NULL data pointer (i.e. header display request).

Note

This handler is optional; if none is given, an internal allocation depending on the value returned by
the rewind() handler can be obtained.

5.10.2.2 void(= xnvfile_snapshot_ops::end)(struct xnvfile_snapshot _iterator =it, void +buf)

This handler releases the memory buffer previously obtained from begin(). It is usually called after the
snapshot data has been output by show(), but it may also be called before rewinding the vfile after a
revision change, to release the dropped buffer.

Parameters

it

A pointer to the current snapshot iterator.

buf

A pointer to the buffer to release.

Note

This routine is optional and the pointer may be NULL. It is not needed upon internal buffer allocation;
see the description of the rewind()handler".

5.10.2.3 int(+ xnvfile_snapshot_ops::next)(struct xnvfile_snapshot_iterator it, void *data)

This handler fetches the next record, as part of the snapshot data to be sent back to the reader via the

show().

Parameters

~

i

A pointer to the current snapshot iterator.

data

A pointer to the record to fill in.

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen




5.10 xnvfile_snapshot_ops Struct Reference 125

Returns

a strictly positive value, if the call succeeds and leaves a valid record into data, which should be
passed to the show() handler() during the formatting and output phase. Otherwise:

¢ A negative error code. This will abort the data collection, and return this status to the reader.

e VFILE_SEQ_SKIP, a special value indicating that the current record should be skipped. In such a
case, the data pointer is not advanced to the next position before the next() handler is called anew.

Note

This handler is called with the vfile lock held. Before each invocation of this handler, the vfile core
checks whether the revision tag has been touched, in which case the data collection is restarted
from scratch. A data collection phase succeeds whenever all records can be fetched via the
next() handler, while the revision tag remains unchanged, which indicates that a consistent snap-
shot of the object state was taken.

5.10.2.4 int(+ xnvfile_snapshot_ops::rewind)(struct xnvfile_snapshot_iterator ~it)

This handler (re-)initializes the data collection, moving the seek pointer at the first record. When the file
revision tag is touched while collecting data, the current reading is aborted, all collected data dropped,
and the vfile is eventually rewound.

Parameters

~

it | A pointer to the current snapshot iterator. Two useful information can be retrieved

from this iterator in this context:

e it->Vfile is a pointer to the descriptor of the virtual file being rewound.

e xnvfile_iterator_priv(it) returns a pointer to the private data area, available from the descriptor,
which size is vfile->privsz. If the latter size is zero, the returned pointer is meaningless and should
not be used.

Returns

A negative error code aborts the data collection, and is passed back to the reader. Otherwise:

e a strictly positive value is interpreted as the total number of records which will be returned by
the next() handler during the data collection phase. If no begin() handler is provided in the
operation descriptor, this value is used to allocate the snapshot buffer internally. The size of this
buffer would then be vfile->datasz * value.

e zero leaves the allocation to the begin() handler if present, or indicates that no record is to be
output in case such handler is not given.

Note

This handler is optional; a NULL value indicates that nothing needs to be done for rewinding the
vfile. It is called with the vfile lock held.

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen



126 Data Structure Documentation

5.10.2.5 int(+ xnvfile_snapshot_ops::show)(struct xnvfile_snapshot_iterator xit, void xdata)

This handler should format and output a record from the collected data.

xnvfile_printf(), xnvfile_write(), xnvfile_puts() and xnvfile_putc() are available to format and/or emit the
output. All routines take the iterator argument it as their first parameter.

Parameters
it | A pointer to the current snapshot iterator.
data | A pointer to the record to format then output. The first call to the handler is always
passed a NULL data pointer; the show handler should test this special value to output
any header that fits, prior to receiving more calls with actual records.
Returns

zero if the call succeeds, also indicating that the handler should be called for the next record if any.
Otherwise:

e A negative error code. This will abort the output phase, and return this status to the reader.

e VFILE_SEQ_SKIP, a special value indicating that the current record should be skipped and will not
be output.

5.10.2.6 ssize_t(x xnvfile_snapshot_ops::store)(struct xnvfile_input xinput)

This handler receives data written to the vfile, likely for updating the associated Xenomai object’s state,
or triggering any other action which fits. This is the only handler which deals with the write-side of a Vfile.
It is called when writing to the /proc entry of the vfile from a user-space process.

The input data is described by a descriptor passed to the handler, which may be subsequently passed to
parsing helper routines. For instance, xnvfile_get_string() will accept the input descriptor for returning the
written data as a null-terminated character string. On the other hand, xnvfile_get_integer() will attempt
to return a long integer from the input data.

Parameters

input | A pointer to an input descriptor. It refers to an opaque data from the handler’s stand-
point.

Returns

the number of bytes read from the input descriptor if the call succeeds. Otherwise, a negative error
code. Return values from parsing helper routines are commonly passed back to the caller by the
store() handler.

Note
This handler is optional, and may be omitted for read-only vfiles.

Referenced by xnvfile_init_snapshot().

The documentation for this struct was generated from the following file:

e include/nucleus/vfile.h

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen



Chapter 6

File Documentation

6.1 include/nucleus/bufd.h File Reference

Include dependency graph for bufd.h:

include/nucleus/bufd.h

nucleus/types.h

\ J

asm/xenomai/system.h nucleus/compiler.h

linux/errno.h nucleus/assert.h

This graph shows which files directly or indirectly include this file:

include/nucleus/bufd.h

ksrc/nucleus/bufd.c

Functions

e static void xnbufd_map_uread (struct xnbufd =bufd, const void __user =ptr, size_t len)
Initialize a buffer descriptor for reading from user memory.

e static void xnbufd_map_uwrite (struct xnbufd =bufd, void __user =ptr, size_t len)
Initialize a buffer descriptor for writing to user memory.

e ssize_t xnbufd_unmap_uread (struct xnbufd =bufd)
Finalize a buffer descriptor obtained from xnbufd_map_uread|).

e ssize_t xnbufd_unmap_uwrite (struct xnbufd =bufd)


$types_8h_source.html
$compiler_8h_source.html
$assert_8h_source.html
$bufd_8c.html

128 File Documentation

Finalize a buffer descriptor obtained from xnbufd_map_uwrite().

e static void xnbufd_map_kread (struct xnbufd =bufd, const void =ptr, size_t len)
Initialize a buffer descriptor for reading from kernel memory.

e static void xnbufd_map_kwrite (struct xnbufd =bufd, void =ptr, size_t len)
Initialize a buffer descriptor for writing to kernel memory.

e ssize_t xnbufd_unmap_kread (struct xnbufd =bufd)
Finalize a buffer descriptor obtained from xnbufd_map_kread().

e ssize_t xnbufd_unmap_kwrite (struct xnbufd +bufd)
Finalize a buffer descriptor obtained from xnbufd_map_kwrite().

e ssize_t xnbufd_copy_to_kmem (void =ptr, struct xnbufd +bufd, size_t len)
Copy memory covered by a buffer descriptor to kernel memory.

e ssize_t xnbufd_copy_from_kmem (struct xnbufd +bufd, void *from, size_t len)
Copy kernel memory to the area covered by a buffer descriptor.

¢ void xnbufd_invalidate (struct xnbufd *bufd)
Invalidate a buffer descriptor.

e static void xnbufd_reset (struct xnbufd =bufd)

Reset a buffer descriptor.

6.1.1 Detailed Description

Note

Copyright (C) 2009 Philippe Gerum rpm@xenomai .org.

Xenomai is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 2 of the License, or (at your
option) any later version.

Xenomai is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with Xenomaij; if not, write to
the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

6.2 include/nucleus/hostrt.h File Reference

Definitions for global semaphore heap shared objects.

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen


mailto:rpm@xenomai.org

6.2 include/nucleus/hostrt.h File Reference 129

Include dependency graph for hostrt.h:

include/nucleus/hostrt.h

asm-generic/xenomai

/system.h nucleus/seglock.h

asm/xenomai/atomic.h

This graph shows which files directly or indirectly include this file:

include/nucleus/hostrt.h

include/nucleus/vdso.h

ksrc/nucleus/shadow.c

6.2.1 Detailed Description

Definitions for global semaphore heap shared objects.

Author

Wolfgang Mauerer

Copyright (C) 2010 Wolfgang Mauerer wol fgang.mauerer@siemens. com.

Xenomai is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 2 of the License, or (at your
option) any later version.

Xenomai is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with Xenomai; if not, write to
the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen


$seqlock_8h_source.html
$vdso_8h.html
$shadow_8c.html
mailto:wolfgang.mauerer@siemens.com

130 File Documentation

6.3 include/nucleus/map.h File Reference

Include dependency graph for map.h:

include/nucleus/map.h

nucleus/types.h

v

asm/xenomai/system.h nucleus/compiler.h

linux/errno.h nucleus/assert.h

This graph shows which files directly or indirectly include this file:

include/nucleus/map.h

ksrc/nucleus/map.c

Functions

e xnmap_t * xnmap_create (int nkeys, int reserve, int offset)

Create a map.
e void xnmap_delete (xnmap_t *map)

Delete a map.

e int xnmap_enter (xnmap_t *map, int key, void =objaddr)
Index an object into a map.

e int xnmap_remove (xnmap_t *map, int key)

Remove an object reference from a map.
e static void * xnmap_fetch_nocheck (xnmap_t *map, int key)

Search an object into a map - unchecked form.
e static void » xnmap_fetch (xnmap_t *map, int key)

Search an object into a map.

6.3.1 Detailed Description

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen


$types_8h_source.html
$compiler_8h_source.html
$assert_8h_source.html
$map_8c.html

6.4 include/nucleus/pod.h File Reference 131

Note

Copyright (C) 2007 Philippe Gerum rpm@xenomai .org.

Xenomai is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 2 of the License, or (at your
option) any later version.

Xenomai is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with Xenomaij if not, write to
the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

6.4 include/nucleus/pod.h File Reference

Real-time pod interface header.

Include dependency graph for pod.h:

include/nucleus/pod.h

nucleus/sched.h

nucleus/schedqueue.h

Data Structures

e struct xnpod
Real-time pod descriptor.

Functions

e int xnpod_init (void)
Initialize the core pod.
e int xnpod_enable_timesource (void)

Activate the core time source.
¢ void xnpod_disable_timesource (void)

Stop the core time source.

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen


mailto:rpm@xenomai.org
$sched_8h.html
$thread_8h_source.html
$vfile_8h.html
$schedqueue_8h_source.html
$sched-tp_8h.html
$sched-sporadic_8h.html
$sched-idle_8h.html
$sched-rt_8h.html
$types_8h_source.html
$stat_8h_source.html
$timer_8h.html
$registry_8h.html
$schedparam_8h_source.html
$compiler_8h_source.html
$assert_8h_source.html
$timebase_8h.html
$queue_8h_source.html
$synch_8h_source.html
$xenomai_8h_source.html
$bufd_8c.html
$heap_8c.html
$intr_8c.html
$map_8c.html
$pod_8c.html
$registry_8c.html
$sched-rt_8c.html
$sched-sporadic_8c.html
$sched-tp_8c.html
$sched_8c.html
$select_8c.html
$shadow_8c.html
$synch_8c.html
$timebase_8c.html
$timer_8c.html
$vfile_8c.html

132

File Documentation

6.4.1

void xnpod_shutdown (int xtype)
Shutdown the current pod.
int xnpod_init_thread (struct xnthread =thread, const struct xnthread_init_attr =attr, struct xnsched-
_class *sched_class, const union xnsched_policy_param *sched_param)
Initialize a new thread.
int xnpod_start_thread (xnthread_t sthread, const struct xnthread_start_attr =attr)
Initial start of a newly created thread.
void xnpod_stop_thread (xnthread_t sthread)
Stop a thread.
void xnpod_restart_thread (xnthread_t «thread)
Restart a thread.
void xnpod_delete_thread (xnthread_t «thread)
Delete a thread.
void xnpod_abort_thread (xnthread_t «thread)
Abort a thread.
xnflags_t xnpod_set_thread_mode (xnthread_t sthread, xnflags_t clrmask, xnflags_t setmask)
Change a thread'’s control mode.
void xnpod_suspend_thread (xnthread_t sthread, xnflags_t mask, xnticks_t timeout, xntmode_t
timeout_mode, struct xnsynch =wchan)
Suspend a thread.
void xnpod_resume_thread (xnthread_t «thread, xnflags_t mask)
Resume a thread.
int xnpod_unblock_thread (xnthread_t =thread)
Unblock a thread.
int xnpod_set_thread_schedparam (struct xnthread =thread, struct xnsched_class *sched_class,
const union xnsched_policy_param xsched_param)
Change the base scheduling parameters of a thread.
int xnpod_migrate_thread (int cpu)
Migrate the current thread.
void xnpod_dispatch_signals (void)
Deliver pending asynchronous signals to the running thread.
static void xnpod_schedule (void)
Rescheduling procedure entry point.
int xnpod_set_thread_periodic (xnthread_t =thread, xnticks_t idate, xnticks_t period)
Make a thread periodic.
int xnpod_wait_thread_period (unsigned long *overruns_r)
Wait for the next periodic release point.
int xnpod_set_thread_tslice (struct xnthread sthread, xnticks_t quantum)
Set thread time-slicing information.
int xnpod_add_hook (int type, void(+routine)(xnthread_t *))
Install a nucleus hook.
int xnpod_remove_hook (int type, void(xroutine)(xnthread_t *))

Remove a nucleus hook.

Detailed Description

Real-time pod interface header.

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen



6.5 include/nucleus/registry.h File Reference 133

Author

Philippe Gerum

Copyright (C) 2001-2007 Philippe Gerum rpm@xenomai.org. Copyright (C) 2004 The RTAI project
http://www.rtai.org Copyright (C) 2004 The HYADES project http://www.hyades-itea.org Copy-
right (C) 2004 The Xenomai project http://www.xenomai.org

Xenomai is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 2 of the License, or (at your
option) any later version.

Xenomai is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with Xenomai; if not, write to
the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

6.5 include/nucleus/registry.h File Reference

This file is part of the Xenomai project.

Include dependency graph for registry.h:

include/nucleus/registry.h |

nucleus/vfile.h

nucleus/synch.h

nucleus/queue.h

linux/seq_file.h linux/proc_fs.h

nucleus/types.h

/I

Functions

e int xnreqistry_enter (const char =key, void *objaddr, xnhandle_t *phandle, struct xnpnode =pnode)
Register a real-time object.

e int xnregistry_bind (const char =key, xnticks_t timeout, int timeout_mode, xnhandle_t «phandle)
Bind to a real-time object.

e int xnregistry_remove (xnhandle_t handle)

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen


mailto:rpm@xenomai.org
http://www.rtai.org
http://www.hyades-itea.org
http://www.xenomai.org
$types_8h_source.html
$synch_8h_source.html
$vfile_8h.html
$compiler_8h_source.html
$assert_8h_source.html
$queue_8h_source.html
$thread_8h_source.html
$pod_8c.html
$registry_8c.html
$pipe_8h_source.html
$sched_8h.html
$heap_8c.html
$sched_8c.html
$synch_8c.html
$timer_8c.html
$select_8h.html
$pod_8h.html
$sched-idle_8c.html
$xenomai_8h_source.html
$bufd_8c.html
$intr_8c.html
$map_8c.html
$sched-rt_8c.html
$sched-sporadic_8c.html
$sched-tp_8c.html
$select_8c.html
$shadow_8c.html
$timebase_8c.html
$vfile_8c.html

134 File Documentation

Forcibly unregister a real-time object.
int xnregistry_remove_safe (xnhandle_t handle, xnticks_t timeout)

Unregister an idle real-time object.
void = xnregistry_get (xnhandle_t handle)

Find and lock a real-time object into the registry.
void = xnregistry_fetch (xnhandle_t handle)

Find a real-time object into the registry.
u_long xnregistry_put (xnhandle_t handle)

Unlock a real-time object from the registry.

6.5.1 Detailed Description
This file is part of the Xenomai project.

Note

Copyright (C) 2004 Philippe Gerum rpm@xenomai.org

This program is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 2 of the License, or (at your
option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not, write
to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

6.6 include/nucleus/sched-idle.h File Reference

Definitions for the IDLE scheduling class.

This graph shows which files directly or indirectly include this file:

6.6.1 Detailed Description
Definitions for the IDLE scheduling class.

Author

Philippe Gerum

Copyright (C) 2008 Philippe Gerum rpm@xenomai .org.

Xenomai is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 2 of the License, or (at your
option) any later version.

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen


mailto:rpm@xenomai.org
$sched_8h.html
$pod_8h.html
$sched-idle_8c.html
$xenomai_8h_source.html
$bufd_8c.html
$heap_8c.html
$intr_8c.html
$map_8c.html
$pod_8c.html
$registry_8c.html
$sched-rt_8c.html
$sched-sporadic_8c.html
$sched-tp_8c.html
$sched_8c.html
$select_8c.html
$shadow_8c.html
$synch_8c.html
$timebase_8c.html
$timer_8c.html
$vfile_8c.html
mailto:rpm@xenomai.org

6.7 include/nucleus/sched-rt.h File Reference 135

Xenomai is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with Xenomai; if not, write to
the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

6.7 include/nucleus/sched-rt.h File Reference

Definitions for the RT scheduling class.

This graph shows which files directly or indirectly include this file:

6.7.1 Detailed Description
Definitions for the RT scheduling class.

Author

Philippe Gerum

Copyright (C) 2008 Philippe Gerum rpm@xenomai .org.

Xenomai is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 2 of the License, or (at your
option) any later version.

Xenomai is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with Xenomai; if not, write to
the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

6.8 include/nucleus/sched-sporadic.h File Reference

Definitions for the SSP scheduling class.

This graph shows which files directly or indirectly include this file:

6.8.1 Detailed Description

Definitions for the SSP scheduling class.

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen


$sched_8h.html
$pod_8h.html
$sched-idle_8c.html
$xenomai_8h_source.html
$bufd_8c.html
$heap_8c.html
$intr_8c.html
$map_8c.html
$pod_8c.html
$registry_8c.html
$sched-rt_8c.html
$sched-sporadic_8c.html
$sched-tp_8c.html
$sched_8c.html
$select_8c.html
$shadow_8c.html
$synch_8c.html
$timebase_8c.html
$timer_8c.html
$vfile_8c.html
mailto:rpm@xenomai.org
$sched_8h.html
$pod_8h.html
$sched-idle_8c.html
$xenomai_8h_source.html
$bufd_8c.html
$heap_8c.html
$intr_8c.html
$map_8c.html
$pod_8c.html
$registry_8c.html
$sched-rt_8c.html
$sched-sporadic_8c.html
$sched-tp_8c.html
$sched_8c.html
$select_8c.html
$shadow_8c.html
$synch_8c.html
$timebase_8c.html
$timer_8c.html
$vfile_8c.html

136 File Documentation

Author

Philippe Gerum

Copyright (C) 2009 Philippe Gerum rpm@xenomai.org.

Xenomai is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 2 of the License, or (at your
option) any later version.

Xenomai is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with Xenomai; if not, write to
the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
6.9 include/nucleus/sched-tp.h File Reference

Definitions for the TP scheduling class.

This graph shows which files directly or indirectly include this file:

6.9.1 Detailed Description

Definitions for the TP scheduling class.

Author

Philippe Gerum

Copyright (C) 2008 Philippe Gerum rpm@xenomai.org.

Xenomai is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 2 of the License, or (at your
option) any later version.

Xenomai is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with Xenomaij if not, write to
the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

6.10 include/nucleus/sched.h File Reference

Scheduler interface header.

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen


mailto:rpm@xenomai.org
$sched_8h.html
$pod_8h.html
$sched-idle_8c.html
$xenomai_8h_source.html
$bufd_8c.html
$heap_8c.html
$intr_8c.html
$map_8c.html
$pod_8c.html
$registry_8c.html
$sched-rt_8c.html
$sched-sporadic_8c.html
$sched-tp_8c.html
$sched_8c.html
$select_8c.html
$shadow_8c.html
$synch_8c.html
$timebase_8c.html
$timer_8c.html
$vfile_8c.html
mailto:rpm@xenomai.org

6.10 include/nucleus/sched.h File Reference 137

Include dependency graph for sched.h:

include/nucleus/sched.h

nucleus/schedqueue.h

Data Structures

e struct xnsched
Scheduling information structure.

Typedefs

e typedef struct xnsched xnsched_t
Scheduling information structure.

Functions

¢ static void xnsched_rotate (struct xnsched *sched, struct xnsched_class *sched_class, const union
xnsched_policy_param =sched_param)

Rotate a scheduler runqueue.

6.10.1 Detailed Description

Scheduler interface header.

Author

Philippe Gerum

Copyright (C) 2008 Philippe Gerum rpm@xenomai .org.

Xenomai is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 2 of the License, or (at your
option) any later version.

Xenomai is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen


$thread_8h_source.html
$vfile_8h.html
$schedqueue_8h_source.html
$sched-tp_8h.html
$sched-sporadic_8h.html
$sched-idle_8h.html
$sched-rt_8h.html
$types_8h_source.html
$stat_8h_source.html
$timer_8h.html
$registry_8h.html
$schedparam_8h_source.html
$compiler_8h_source.html
$assert_8h_source.html
$timebase_8h.html
$queue_8h_source.html
$synch_8h_source.html
$pod_8h.html
$sched-idle_8c.html
$xenomai_8h_source.html
$bufd_8c.html
$heap_8c.html
$intr_8c.html
$map_8c.html
$pod_8c.html
$registry_8c.html
$sched-rt_8c.html
$sched-sporadic_8c.html
$sched-tp_8c.html
$sched_8c.html
$select_8c.html
$shadow_8c.html
$synch_8c.html
$timebase_8c.html
$timer_8c.html
$vfile_8c.html
mailto:rpm@xenomai.org

138 File Documentation

You should have received a copy of the GNU General Public License along with Xenomai; if not, write to
the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

6.11 include/nucleus/select.h File Reference

file descriptors events multiplexing header.

Include dependency graph for select.h:

include/nucleus/select.h

\

nucleus/thread.h

| nucleus/timer.h | | nucleus/registry.h | | nucleus/schedparam.h |

/

| nucleus/stat.h |

| nucleus/synch.h | | nucleus/timebase.h |

| nucleus/queue.h | | nucleus/vfile.h

[\

linux/proc_fs.h linux/seq_file.h

nucleus/types.h

linux/errno.h asm/xenomai/system.h nucleus/compiler.h

nucleus/assert.h |

This graph shows which files directly or indirectly include this file:

include/nucleus/select.h

ksrc/nucleus/pod.c ksrc/nucleus/select.c

6.11.1 Detailed Description
file descriptors events multiplexing header.

Author

Gilles Chanteperdrix

Copyright (C) 2008 Efixo gilles.chanteperdrix@xenomai.org

Xenomai is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 2 of the License, or (at your
option) any later version.

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen


$thread_8h_source.html
$types_8h_source.html
$stat_8h_source.html
$timer_8h.html
$registry_8h.html
$schedparam_8h_source.html
$compiler_8h_source.html
$assert_8h_source.html
$timebase_8h.html
$queue_8h_source.html
$vfile_8h.html
$synch_8h_source.html
$pod_8c.html
$select_8c.html
mailto:gilles.chanteperdrix@xenomai.org

6.12 include/nucleus/timebase.h File Reference 139

Xenomai is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with Xenomai; if not, write to
the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

6.12 include/nucleus/timebase.h File Reference

Include dependency graph for timebase.h:

| include/nucleus/timebase.h |

| nucleus/queue.h | | nucleus/vfile.h |
nucleus/types.h linux/proc_fs.h linux/seq_file.h

linux/errno.h

nucleus/assert.h asm/xenomai/system.h nucleus/compiler.h

This graph shows which files directly or indirectly include this file:

Functions

e int xntbase_alloc (const char xname, u_long period, u_long flags, xntbase_t +basep)

Allocate a time base.
¢ void xntbase_free (xntbase_t =base)

Free a time base.
¢ int xntbase_update (xntbase_t =base, u_long period)

Change the period of a time base.
¢ int xntbase_switch (const char sname, u_long period, xntbase_t =+basep)

Replace a time base.
¢ void xntbase_start (xntbase_t =base)

Start a time base.
e void xntbase_stop (xntbase_t <base)

Stop a time base.
e void xntbase_tick (xntbase_t =base)

Announce a clock tick to a time base.
e xnticks_t xntbase_convert (xntbase_t xsrcbase, xnticks_t ticks, xntbase_t =dstbase)

Convert a clock value into another time base.

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen


$queue_8h_source.html
$vfile_8h.html
$types_8h_source.html
$assert_8h_source.html
$compiler_8h_source.html
$module_8h_source.html
$timer_8h.html
$xenomai_8h_source.html
$pod_8c.html
$shadow_8c.html
$synch_8c.html
$timebase_8c.html
$thread_8h_source.html
$sched_8c.html
$timer_8c.html
$pipe_8h_source.html
$sched_8h.html
$heap_8c.html
$registry_8c.html
$select_8h.html
$pod_8h.html
$sched-idle_8c.html
$bufd_8c.html
$intr_8c.html
$map_8c.html
$sched-rt_8c.html
$sched-sporadic_8c.html
$sched-tp_8c.html
$select_8c.html
$vfile_8c.html

140 File Documentation

e static xnticks_t xntbase_get_time (xntbase_t =base)

Get the clock time for a given time base.
¢ void xntbase_adjust_time (xntbase_t =base, xnsticks_t delta)

Adjust the clock time for the system.

6.12.1 Detailed Description

Note
Copyright (C) 2006,2007 Philippe Gerum rpm@xenomai .org.

Xenomai is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 2 of the License, or (at your
option) any later version.

Xenomai is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY:; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with Xenomai; if not, write to
the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

6.13 include/nucleus/timer.h File Reference

Include dependency graph for timer.h:

| include/nucleus/timer.h |

AN

| nucleus/stat.h | | nucleus/timebase.h |

| nucleus/queue.h | | nucleus/vfile.h |

nucleus/types.h linux/seq_file.h linux/proc_fs.h

L

linux/errno.h asm/xenomai/system.h nucleus/compiler.h

nucleus/assert.h

This graph shows which files directly or indirectly include this file:

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen


mailto:rpm@xenomai.org
$timebase_8h.html
$stat_8h_source.html
$queue_8h_source.html
$vfile_8h.html
$types_8h_source.html
$assert_8h_source.html
$compiler_8h_source.html
$thread_8h_source.html
$pod_8c.html
$sched_8c.html
$timebase_8c.html
$timer_8c.html
$pipe_8h_source.html
$sched_8h.html
$heap_8c.html
$registry_8c.html
$synch_8c.html
$select_8h.html
$pod_8h.html
$sched-idle_8c.html
$xenomai_8h_source.html
$bufd_8c.html
$intr_8c.html
$map_8c.html
$sched-rt_8c.html
$sched-sporadic_8c.html
$sched-tp_8c.html
$select_8c.html
$shadow_8c.html
$vfile_8c.html

6.14 include/nucleus/vdso.h File Reference 141

Functions

e void xntimer_destroy (xntimer_t =timer)

Release a timer object.
e static int xntimer_start (xntimer_t «timer, xnticks_t value, xnticks_t interval, xntmode_t mode)

Arm a timer.
e static void xntimer_stop (xntimer_t =timer)

Disarm a timer.
e static xnticks_t xntimer_get_date (xntimer_t =timer)

Return the absolute expiration date.
e static xnticks_t xntimer_get_timeout (xntimer_t «timer)

Return the relative expiration date.
e static xnticks_t xntimer_get_interval (xntimer_t «timer)

Return the timer interval value.
e unsigned long xntimer_get_overruns (xntimer_t stimer, xnticks_t now)

Get the count of overruns for the last tick.
e void xntimer_freeze (void)

Freeze all timers (from every time bases).
¢ void xntimer_tick_aperiodic (void)

Process a timer tick for the aperiodic master time base.
e void xntimer_tick_periodic (xntimer_t =timer)

Process a timer tick for a slave periodic time base.

6.13.1 Detailed Description

Note
Copyright (C) 2001,2002,2003 Philippe Gerum rpm@xenomai .org.
Xenomai is free software; you can redistribute it and/or modify it under the terms of the GNU General

Public License as published by the Free Software Foundation; either version 2 of the License, or (at your
option) any later version.

Xenomai is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with Xenomai; if not, write to
the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

6.14 include/nucleus/vdso.h File Reference

Definitions for global semaphore heap shared objects.

Include dependency graph for vdso.h:

include/nucleus/vdso.h

nucleus/types.h nucleus/hostrt.h

asm-generic/xenomai

linux/ermo.h /system.h

asm/xenomai/system.h nucleus/compiler.h | | nucleus/assert.h |

nucleus/seglock.h

asm/xenomai/atomic.h

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen


mailto:rpm@xenomai.org
$types_8h_source.html
$hostrt_8h.html
$compiler_8h_source.html
$assert_8h_source.html
$seqlock_8h_source.html

142

File Documentation

This graph shows which files directly or indirectly include this file:

include/nucleus/vdso.h

ksrc/nucleus/shadow.c

6.14.1 Detailed Description

Definitions for global semaphore heap shared objects.

Author

Wolfgang Mauerer

Copyright (C) 2009 Wolfgang Mauerer wol fgang.mauerer@siemens. com.

Xenomai is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 2 of the License, or (at your

option) any later version.

Xenomai is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with Xenomai; if not, write to
the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

6.15 include/nucleus/vfile.h File Reference

This file is part of the Xenomai project.

Include dependency graph for vfile.h:

| include/nucleus/vfile.h |

e

linux/proc_fs.h linux/seq_file.h

nucleus/types.h

linux/errno.h

asm/xenomai/system.h | nucleus/compiler.h | nucleus/assert.h

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen


$shadow_8c.html
mailto:wolfgang.mauerer@siemens.com
$types_8h_source.html
$compiler_8h_source.html
$assert_8h_source.html

6.15 include/nucleus/vfile.h File Reference 143

This graph shows which files directly or indirectly include this file:

Data Structures

e struct xnvfile_lock_ops
Vfile locking operations.
e struct xnvfile_regular_ops
Regular vfile operation descriptor.
e struct xnvfile_regular_iterator
Regular vfile iterator.
e struct xnvfile_snapshot_ops
Snapshot vfile operation descriptor.
e struct xnvfile_rev_tag
Snapshot revision tag.
e struct xnvfile_snapshot
Snapshot vfile descriptor.
e struct xnvfile_snapshot_iterator

Snapshot-driven vfile iterator.

Functions

¢ int xnvfile_init_snapshot (const char sname, struct xnvfile_snapshot =vfile, struct xnvfile_directory
sparent)
Initialize a snapshot-driven vfile.
e int xnvfile_init_regular (const char *name, struct xnvfile_regular =vfile, struct xnvfile_directory
sparent)
Initialize a regular Vfile.
e int xnvfile_init_dir (const char =name, struct xnvfile_directory =vdir, struct xnvfile_directory
=parent)
Initialize a virtual directory entry.
e int xnvfile_init_link (const char =from, const char =to, struct xnvfile_link =vlink, struct xnvfile_-
directory =parent)
Initialize a virtual link entry.
e void xnvfile_destroy (struct xnvfile =vfile)
Removes a virtual file entry.
e ssize_t xnvfile_get_blob (struct xnvfile_input +input, void =data, size_t size)
Read in a data bulk written to the vfile.
e ssize_t xnvfile_get_string (struct xnvfile_input =input, char =s, size_t maxlen)
Read in a C-string written to the Vfile.
e ssize_t xnvfile_get_integer (struct xnvfile_input =input, long =valp)

Evaluate the string written to the Vfile as a long integer.

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen


$timebase_8h.html
$sched_8h.html
$heap_8c.html
$vfile_8c.html
$registry_8h.html
$module_8h_source.html
$timer_8h.html
$xenomai_8h_source.html
$pod_8c.html
$shadow_8c.html
$synch_8c.html
$timebase_8c.html
$thread_8h_source.html
$sched_8c.html
$timer_8c.html
$pipe_8h_source.html
$registry_8c.html
$select_8h.html
$pod_8h.html
$sched-idle_8c.html
$bufd_8c.html
$intr_8c.html
$map_8c.html
$sched-rt_8c.html
$sched-sporadic_8c.html
$sched-tp_8c.html
$select_8c.html

144 File Documentation

Variables

e struct xnvfile_directory nkvfroot
Xenomai vfile root directory.

6.15.1 Detailed Description

This file is part of the Xenomai project.

Note

Copyright (C) 2010 Philippe Gerum rpm@xenomai.org

This program is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 2 of the License, or (at your
option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not, write
to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

6.16 ksrc/arch/arm/hal.c File Reference

Adeos-based Real-Time Abstraction Layer for ARM.

Include dependency graph for hal.c:

Functions

e int rthal_timer_request (void(xtick_handler)(void), void(*mode_emul)(enum clock_event_mode
mode, struct clock_event_device +cdev), int(xtick_emul)(unsigned long delay, struct clock_event_-
device xcdev), int cpu)

Grab the hardware timer.
¢ void rthal_timer_release (int cpu)
Release the hardware timer.
e int rthal_irq_host_request (unsigned irq, rthal_irg_host_handler_t handler, char *name, void *dev-
_id)
Install a shared Linux interrupt handler.
e int rthal_irg_host_release (unsigned irq, void *dev_id)
Uninstall a shared Linux interrupt handler.

6.16.1 Detailed Description

Adeos-based Real-Time Abstraction Layer for ARM. ARM port Copyright (C) 2005 Stelian Pop

Xenomai is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation, Inc., 675 Mass Ave, Cambridge MA
02139, USA,; either version 2 of the License, or (at your option) any later version.

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen


mailto:rpm@xenomai.org

6.17 ksrc/arch/blackfin/hal.c File Reference 145

Xenomai is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not, write
to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

6.17 ksrc/arch/blackfin/hal.c File Reference

Adeos-based Real-Time Abstraction Layer for the Blackfin architecture.

Include dependency graph for hal.c:

Functions

e int rthal_timer_request (void(ztick_handler)(void), void(*mode_emul)(enum clock_event_mode
mode, struct clock_event_device =cdev), int(xtick_emul)(unsigned long delay, struct clock_event_-
device +cdev), int cpu)

Grab the hardware timer.

¢ void rthal_timer_release (int cpu)
Release the hardware timer.

e int rthal_irg_enable (unsigned irq)
Enable an interrupt source.

¢ int rthal_irq_disable (unsigned irq)
Disable an interrupt source.

e int rthal_irq_host_request (unsigned irq, rthal_irg_host_handler_t handler, char *name, void *dev-
_id)

Install a shared Linux interrupt handler.
e int rthal_irg_host_release (unsigned irq, void *dev_id)

Uninstall a shared Linux interrupt handler.

6.17.1 Detailed Description

Adeos-based Real-Time Abstraction Layer for the Blackfin architecture. Copyright (C) 2005-2006
Philippe Gerum.

Xenomai is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation, Inc., 675 Mass Ave, Cambridge MA
02139, USA; either version 2 of the License, or (at your option) any later version.

Xenomai is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not, write
to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen



146 File Documentation

6.18 ksrc/arch/generic/hal.c File Reference

Generic Real-Time HAL.

Include dependency graph for hal.c:

| ksrefarchigenerichal.c

linuxversion. h linuxislab.h linuxtermo.h h h h linux/bitops.h h asmiirq.nh asmixenomaihal.h stdarg.h

Functions

e int rthal_irg_request (unsigned irq, rthal_irg _handler_t handler, rthal irq_ackfn_t ackfn, void
*Cookie)

Install a real-time interrupt handler.
e int rthal_irg_release (unsigned irq)

Uninstall a real-time interrupt handler.
e rthal_trap_handler_t rthal_trap_catch (rthal_trap_handler_t handler)

Installs a fault handler.
e int rthal_apc_alloc (const char *name, void(xhandler)(void xcookie), void *cookie)

Allocate an APC slot.
¢ void rthal_apc_free (int apc)
Releases an APC slot.

6.18.1 Detailed Description

Generic Real-Time HAL. Copyright ©2005 Philippe Gerum.

This program is free software; you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation, Inc., 675 Mass Ave, Cambridge
MA 02139, USA,; either version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not, write
to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

6.19 ksrc/arch/nios2/hal.c File Reference

Adeos-based Real-Time Abstraction Layer for the NIOS2 architecture.

Include dependency graph for hal.c:

ksrc/arch/nios2/hal.c

linuxiversion.h linux/slab.h linux/erro.h lir h .h asm/uaccess.h asm/unistd.h asm/xenomai/hal.h

Functions

¢ void rthal_timer_release (int cpu)

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen



6.20 ksrc/arch/powerpc/hal.c File Reference 147

Release the hardware timer.
int rthal_irg_enable (unsigned irq)
Enable an interrupt source.
int rthal_irg_disable (unsigned irq)
Disable an interrupt source.
int rthal_irg_host_request (unsigned irq, rthal_irq_host_handler_t handler, char sname, void *dev-
_id)
Install a shared Linux interrupt handler.
int rthal_irg_host_release (unsigned irq, void =dev_id)
Uninstall a shared Linux interrupt handler.

6.19.1 Detailed Description

Adeos-based Real-Time Abstraction Layer for the NIOS2 architecture. Copyright (C) 2009 Philippe
Gerum.

Xenomai is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation, Inc., 675 Mass Ave, Cambridge MA
02139, USA,; either version 2 of the License, or (at your option) any later version.

Xenomai is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not, write
to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

6.20 ksrc/arch/powerpc/hal.c File Reference

Adeos-based Real-Time Abstraction Layer for PowerPC.

Include dependency graph for hal.c:

Functions

e int rthal_timer_request (void(ztick_handler)(void), void(*mode_emul)(enum clock_event_mode
mode, struct clock_event_device =cdev), int(xtick_emul)(unsigned long delay, struct clock_event_-
device +cdev), int cpu)

Grab the hardware timer.
¢ void rthal_timer_release (int cpu)
Release the hardware timer.
e int rthal_irq_host_request (unsigned irq, rthal_irg_host_handler_t handler, char *name, void *dev-
_id)

Install a shared Linux interrupt handler.

e int rthal_irq_host_release (unsigned irq, void =dev_id)
Uninstall a shared Linux interrupt handler.

e int rthal_irg_enable (unsigned irq)
Enable an interrupt source.

e int rthal_irq_disable (unsigned irq)
Disable an interrupt source.

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen



148 File Documentation

6.20.1 Detailed Description

Adeos-based Real-Time Abstraction Layer for PowerPC. Copyright (C) 2004-2006 Philippe Gerum.
64-bit PowerPC adoption copyright (C) 2005 Taneli Vahakangas and Heikki Lindholm

Xenomai is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation, Inc., 675 Mass Ave, Cambridge MA
02139, USA; either version 2 of the License, or (at your option) any later version.

Xenomai is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not, write
to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

6.21 ksrc/arch/sh/hal.c File Reference

Adeos-based Real-Time Abstraction Layer for the SuperH architecture.

Include dependency graph for hal.c:

ksrc/arch/sh/hal.c

linux/version.h linux/slab.h linux/errno.h linux/module.h asm/system.h asm/uaccess.h asm/unistd.h asm/xenomai/hal.h

Functions

e int rthal_timer_request (void(xtick_handler)(void), void(*mode_emul)(enum clock_event_mode
mode, struct clock_event_device =cdev), int(xtick_emul)(unsigned long delay, struct clock_event_-
device xcdev), int cpu)

Grab the hardware timer.
¢ void rthal_timer_release (int cpu)
Release the hardware timer.
e int rthal_irg_enable (unsigned irq)
Enable an interrupt source.
e int rthal_irq_disable (unsigned irq)
Disable an interrupt source.
e int rthal_irq_host_request (unsigned irqg, rthal_irg_host_handler_t handler, char *name, void *dev-
id)
Install a shared Linux interrupt handler.
e int rthal_irg_host_release (unsigned irq, void *dev_id)

Uninstall a shared Linux interrupt handler.

6.21.1 Detailed Description

Adeos-based Real-Time Abstraction Layer for the SuperH architecture. Copyright (C) 2011 Philippe
Gerum.

Xenomai is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation, Inc., 675 Mass Ave, Cambridge MA
02139, USA,; either version 2 of the License, or (at your option) any later version.

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen



6.22 ksrc/arch/x86/hal-common.c File Reference 149

Xenomai is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not, write
to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

6.22 ksrc/arch/x86/hal-common.c File Reference

Adeos-based Real-Time Abstraction Layer for x86.

Include dependency graph for hal-common.c:

ksrc/arch/x86/hal-common.c

asm/xenomai/hal.h

Functions

int rthal_irg_host_request (unsigned irq, rthal_irq_host_handler_t handler, char sname, void *dev-
_id)

Install a shared Linux interrupt handler.

int rthal_irg_host_release (unsigned irq, void =dev_id)

Uninstall a shared Linux interrupt handler.

int rthal_irg_enable (unsigned irq)

Enable an interrupt source.

int rthal_irg_disable (unsigned irq)

Disable an interrupt source.

6.22.1 Detailed Description

Adeos-based Real-Time Abstraction Layer for x86. Common code of i386 and x86_64.
Copyright (C) 2007 Philippe Gerum.

Xenomai is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation, Inc., 675 Mass Ave, Cambridge MA
02139, USA; either version 2 of the License, or (at your option) any later version.

Xenomai is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not, write
to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen



150 File Documentation

6.23 ksrc/arch/x86/hal_32.c File Reference

Adeos-based Real-Time Abstraction Layer for x86.
Include dependency graph for hal_32.c:

Functions

e int rthal_timer_request (void(xtick_handler)(void), void(*mode_emul)(enum clock_event_mode
mode, struct clock_event_device =cdev), int(xtick_emul)(unsigned long delay, struct clock_event_-
device +cdev), int cpu)

Grab the hardware timer.
¢ void rthal_timer_release (int cpu)

Release the hardware timer.

6.23.1 Detailed Description

Adeos-based Real-Time Abstraction Layer for x86. Inspired from original RTAI/x86 HAL interface:
Copyright ©2000 Paolo Mantegazza,

Copyright ©2000 Steve Papacharalambous,

Copyright ©2000 Stuart Hughes,

RTAI/x86 rewrite over Adeos:

Copyright ©2002-2007 Philippe Gerum. SMI workaround:

Copyright ©2004 Gilles Chanteperdrix.

Xenomai is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation, Inc., 675 Mass Ave, Cambridge MA
02139, USA,; either version 2 of the License, or (at your option) any later version.

Xenomai is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not, write
to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

6.24 ksrc/arch/x86/hal_64.c File Reference

Adeos-based Real-Time Abstraction Layer for x86_64.
Include dependency graph for hal_64.c:

ksrelarch/x@6/hal_64.c |-

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen



6.25 ksrc/arch/x86/smi.c File Reference 151

6.24.1 Detailed Description

Adeos-based Real-Time Abstraction Layer for x86_64. Derived from the Xenomai/i386 HAL.
Copyright (C) 2007 Philippe Gerum.

Xenomai is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation, Inc., 675 Mass Ave, Cambridge MA
02139, USA,; either version 2 of the License, or (at your option) any later version.

Xenomai is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not, write
to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

6.25 ksrc/arch/x86/smi.c File Reference

SMI workaround for x86.

Include dependency graph for smi.c:

ksrc/arch/x86/smi.c

linux/kernel.h linux/module.h linux/version.h linux/pci.h linux/pci_ids.h linux/reboot.h Ipci_ids.n .h

6.25.1 Detailed Description

SMI workaround for x86. Cut/Pasted from Vitor Angelo "smi" module. Adapted by Gilles Chanteperdrix
gilles.chanteperdrix@xenomai.org.

This program is free software; you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation, Inc., 675 Mass Ave, Cambridge
MA 02139, USA,; either version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not, write
to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen


mailto:gilles.chanteperdrix@xenomai.org

152 File Documentation

6.26 ksrc/nucleus/bufd.c File Reference

Include dependency graph for bufd.c:

ksrc/nucleus/bufd.c

nucleus/pod.h

asm/xenomailsyscall.h

nucleus/bufd.h

nucleus/sched.h

nucleusieap.h

nucleus/sched-rt.h

nucleus/schedqueue.h

nucleus/stat.h

nucleus/vfile.n

nucleus/queue.h

nucleusftypes.h

linux/seq_file.n linux/proc_fs.h

nucleus/assert.h

Functions

e ssize_t xnbufd_copy_to_kmem (void =ptr, struct xnbufd +bufd, size_t len)

Copy memory covered by a buffer descriptor to kernel memory.
e ssize_t xnbufd_copy_from_kmem (struct xnbufd +bufd, void *from, size_t len)

Copy kernel memory to the area covered by a buffer descriptor.
e ssize_t xnbufd_unmap_uread (struct xnbufd =bufd)

Finalize a buffer descriptor obtained from xnbufd_map_uread().
e ssize_t xnbufd_unmap_uwrite (struct xnbufd =bufd)

Finalize a buffer descriptor obtained from xnbufd_map_uwrite().
¢ void xnbufd_invalidate (struct xnbufd *bufd)

Invalidate a buffer descriptor.
e ssize_t xnbufd_unmap_kread (struct xnbufd =bufd)

Finalize a buffer descriptor obtained from xnbufd_map_kread().
e ssize_t xnbufd_unmap_kwrite (struct xnbufd =bufd)

Finalize a buffer descriptor obtained from xnbufd_map_kwrite().

6.26.1 Detailed Description

Note

Copyright (C) 2009 Philippe Gerum rpm@xenomai .org.

Xenomai is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 2 of the License, or (at your
option) any later version.

Xenomai is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with Xenomai; if not, write to
the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen


$heap_8h_source.html
$assert_8h_source.html
$pod_8h.html
$bufd_8h.html
$queue_8h_source.html
$types_8h_source.html
$compiler_8h_source.html
$sched_8h.html
$thread_8h_source.html
$vfile_8h.html
$schedqueue_8h_source.html
$sched-tp_8h.html
$sched-sporadic_8h.html
$sched-idle_8h.html
$sched-rt_8h.html
$stat_8h_source.html
$timer_8h.html
$registry_8h.html
$schedparam_8h_source.html
$timebase_8h.html
$synch_8h_source.html
mailto:rpm@xenomai.org

6.27 ksrc/nucleus/heap.c File Reference 153

6.27 ksrc/nucleus/heap.c File Reference

Dynamic memory allocation services.

Include dependency graph for heap.c:

Functions

¢ int xnheap_init (xnheap_t *heap, void *heapaddr, u_long heapsize, u_long pagesize)
Initialize a memory heap.

¢ void xnheap_set_label (xnheap_t *heap, const char +label,...)
Set the heap’s label string.

¢ void xnheap_destroy (xnheap_t =heap, void(+flushfn)(xnheap_t *heap, void +extaddr, u_long ext-
size, void =cookie), void =cookie)

Destroys a memory heap.
¢ void * xnheap_alloc (xnheap_t *heap, u_long size)

Allocate a memory block from a memory heap.
¢ int xnheap_test_and_free (xnheap_t *heap, void =block, int(xckfn)(void =block))

Test and release a memory block to a memory heap.
e int xnheap_free (xnheap_t *heap, void *block)

Release a memory block to a memory heap.

¢ int xnheap_extend (xnheap_t xheap, void »extaddr, u_long extsize)
Extend a memory heap.

¢ void xnheap_schedule_free (xnheap_t *heap, void =block, xnholder_t #link)
Schedule a memory block for release.

6.27.1 Detailed Description

Dynamic memory allocation services.

Author

Philippe Gerum

Copyright (C) 2001,2002,2003 Philippe Gerum rpm@xenomai .org.

Xenomai is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 2 of the License, or (at your
option) any later version.

Xenomai is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with Xenomai; if not, write to
the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen


$pod_8h.html
$thread_8h_source.html
$assert_8h_source.html
$vfile_8h.html
$heap_8h_source.html
$sched_8h.html
$schedqueue_8h_source.html
$sched-tp_8h.html
$sched-sporadic_8h.html
$sched-idle_8h.html
$sched-rt_8h.html
$types_8h_source.html
$stat_8h_source.html
$timer_8h.html
$registry_8h.html
$schedparam_8h_source.html
$compiler_8h_source.html
$timebase_8h.html
$queue_8h_source.html
$synch_8h_source.html
mailto:rpm@xenomai.org

154 File Documentation

6.28 ksrc/nucleus/intr.c File Reference

Interrupt management.

Include dependency graph for intr.c:

asmixenomaifbitsfintr.h

Functions

e int xnintr_init (xnintr_t =intr, const char *name, unsigned irq, xnisr_t isr, xniack_t iack, xnflags_t
flags)
Initialize an interrupt object.
e int xnintr_destroy (xnintr_t =intr)

Destroy an interrupt object.

e int xnintr_attach (xnintr_t =intr, void *cookie)
Attach an interrupt object.

e int xnintr_detach (xnintr_t =intr)

Detach an interrupt object.
e int xnintr_enable (xnintr_t «intr)
Enable an interrupt object.
e int xnintr_disable (xnintr_t =intr)
Disable an interrupt object.
e void xnintr_affinity (xnintr_t intr, xnarch_cpumask_t cpumask)

Set interrupt’s processor affinity.

6.28.1 Detailed Description
Interrupt management.

Author
Philippe Gerum

Copyright (C) 2001,2002,2003 Philippe Gerum rpm@xenomai.org. Copyright (C) 2005,2006 Dmitry
Adamushko dmitry.adamushko@gmail.com Copyright (C) 2007 Jan Kiszka jan.kiszka@web.de.

Xenomai is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 2 of the License, or (at your
option) any later version.

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen


$pod_8h.html
$stat_8h_source.html
$intr_8h_source.html
$sched_8h.html
$thread_8h_source.html
$vfile_8h.html
$schedqueue_8h_source.html
$sched-tp_8h.html
$sched-sporadic_8h.html
$sched-idle_8h.html
$sched-rt_8h.html
$types_8h_source.html
$timer_8h.html
$registry_8h.html
$schedparam_8h_source.html
$compiler_8h_source.html
$assert_8h_source.html
$timebase_8h.html
$queue_8h_source.html
$synch_8h_source.html
mailto:rpm@xenomai.org
mailto:dmitry.adamushko@gmail.com
mailto:jan.kiszka@web.de

6.29 ksrc/nucleus/map.c File Reference 155

Xenomai is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with Xenomai; if not, write to
the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

6.29 ksrc/nucleus/map.c File Reference

Include dependency graph for map.c:

ksre/nucleus/map.c.

Functions

e xnmap_t =+ xnmap_create (int nkeys, int reserve, int offset)

Create a map.
¢ void xnmap_delete (xnmap_t *map)

Delete a map.
e int xnmap_enter (xnmap_t *map, int key, void =objaddr)

Index an object into a map.
e int xnmap_remove (xnmap_t *map, int key)

Remove an object reference from a map.

6.29.1 Detailed Description

Note
Copyright (C) 2007 Philippe Gerum rpm@xenomai .org.

Xenomai is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 2 of the License, or (at your
option) any later version.

Xenomai is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with Xenomai; if not, write to
the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen


$heap_8h_source.html
$pod_8h.html
$map_8h.html
$queue_8h_source.html
$types_8h_source.html
$assert_8h_source.html
$compiler_8h_source.html
$sched_8h.html
$thread_8h_source.html
$vfile_8h.html
$schedqueue_8h_source.html
$sched-tp_8h.html
$sched-sporadic_8h.html
$sched-idle_8h.html
$sched-rt_8h.html
$stat_8h_source.html
$timer_8h.html
$registry_8h.html
$schedparam_8h_source.html
$timebase_8h.html
$synch_8h_source.html
mailto:rpm@xenomai.org

156 File Documentation

6.30 ksrc/nucleus/pod.c File Reference

Real-time pod services.

Include dependency graph for pod.c:

Functions

e int xnpod_init (void)
Initialize the core pod.
¢ void xnpod_shutdown (int xtype)
Shutdown the current pod.
¢ int xnpod_init_thread (struct xnthread sthread, const struct xnthread_init_attr »attr, struct xnsched-
_class =sched_class, const union xnsched_policy_param xsched_param)
Initialize a new thread.
¢ int xnpod_start_thread (xnthread_t sthread, const struct xnthread_start_attr attr)
Initial start of a newly created thread.
¢ void xnpod_stop_thread (xnthread_t «thread)
Stop a thread.
¢ void xnpod_restart_thread (xnthread_t «thread)
Restart a thread.
e xnflags_t xnpod_set_thread_mode (xnthread_t sthread, xnflags_t clrmask, xnflags_t setmask)
Change a thread'’s control mode.
¢ void xnpod_delete_thread (xnthread_t »thread)
Delete a thread.
¢ void xnpod_abort_thread (xnthread_t *thread)
Abort a thread.
e void xnpod_suspend_thread (xnthread_t sthread, xnflags_t mask, xnticks_t timeout, xntmode_t
timeout_mode, struct xnsynch =wchan)
Suspend a thread.
e void xnpod_resume_thread (xnthread_t «thread, xnflags_t mask)
Resume a thread.
e int xnpod_unblock_thread (xnthread_t «thread)
Unblock a thread.
e int xnpod_set_thread_schedparam (struct xnthread =thread, struct xnsched_class *sched_class,
const union xnsched_policy_param =sched_param)
Change the base scheduling parameters of a thread.
e int xnpod_migrate_thread (int cpu)
Migrate the current thread.
¢ void xnpod_dispatch_signals (void)

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen


$version_8h_source.html
$pod_8h.html
$assert_8h_source.html
$stat_8h_source.html
$timer_8h.html
$registry_8h.html
$synch_8h_source.html
$heap_8h_source.html
$intr_8h_source.html
$module_8h_source.html
$select_8h.html
$sched_8h.html
$thread_8h_source.html
$vfile_8h.html
$schedqueue_8h_source.html
$sched-tp_8h.html
$sched-sporadic_8h.html
$sched-idle_8h.html
$sched-rt_8h.html
$types_8h_source.html
$schedparam_8h_source.html
$compiler_8h_source.html
$timebase_8h.html
$queue_8h_source.html

6.31 ksrc/nucleus/registry.c File Reference 157

Deliver pending asynchronous signals to the running thread.
e void xnpod_welcome_thread (xnthread_t =thread, int imask)
Thread prologue.
e int xnpod_add_hook (int type, void(+routine)(xnthread_t )
Install a nucleus hook.
¢ int xnpod_remove_hook (int type, void(xroutine)(xnthread_t «))
Remove a nucleus hook.
e int xnpod_trap_fault (xnarch_fltinfo_t «fltinfo)
Default fault handler.
e int xnpod_enable_timesource (void)
Activate the core time source.
¢ void xnpod_disable_timesource (void)
Stop the core time source.
¢ int xnpod_set_thread_periodic (xnthread_t «thread, xnticks_t idate, xnticks_t period)
Make a thread periodic.
e int xnpod_wait_thread_period (unsigned long =overruns_r)
Wait for the next periodic release point.
e int xnpod_set_thread_tslice (struct xnthread *thread, xnticks_t quantum)

Set thread time-slicing information.

6.30.1 Detailed Description

Real-time pod services.

Author

Philippe Gerum

Copyright (C) 2001-2008 Philippe Gerum rpm@xenomai.org. Copyright (C) 2004 The RTAI project
http://www.rtai.org Copyright (C) 2004 The HYADES project http://www.hyades-itea.org Copy-
right (C) 2005 The Xenomai project http://www.Xenomai.org

Xenomai is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 2 of the License, or (at your
option) any later version.

Xenomai is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with Xenomai; if not, write to
the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

6.31 ksrc/nucleus/registry.c File Reference

This file is part of the Xenomai project.

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen


mailto:rpm@xenomai.org
http://www.rtai.org
http://www.hyades-itea.org
http://www.Xenomai.org

158 File Documentation

Include dependency graph for registry.c:

ksre/nucleus/registry.c

nucleus/stat h

Functions

e int xnreqistry_enter (const char +key, void *objaddr, xnhandle_t *phandle, struct xnpnode =pnode)

Register a real-time object.
e int xnregistry_bind (const char =key, xnticks_t timeout, int timeout_mode, xnhandle_t «phandle)

Bind to a real-time object.
e int xnregistry_remove (xnhandle_t handle)

Forcibly unregister a real-time object.
e int xnregistry_remove_safe (xnhandle_t handle, xnticks_t timeout)

Unregister an idle real-time object.
e void = xnregistry_get (xnhandle_t handle)

Find and lock a real-time object into the registry.
e U_long xnregistry_put (xnhandle_t handle)

Unlock a real-time object from the registry.
e void = xnregistry_fetch (xnhandle_t handle)

Find a real-time object into the registry.

6.31.1 Detailed Description
This file is part of the Xenomai project.

Note
Copyright (C) 2004 Philippe Gerum rpm@xenomai.org

This program is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 2 of the License, or (at your
option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not, write
to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen


$pod_8h.html
$thread_8h_source.html
$assert_8h_source.html
$registry_8h.html
$heap_8h_source.html
$sched_8h.html
$vfile_8h.html
$schedqueue_8h_source.html
$sched-tp_8h.html
$sched-sporadic_8h.html
$sched-idle_8h.html
$sched-rt_8h.html
$types_8h_source.html
$stat_8h_source.html
$timer_8h.html
$schedparam_8h_source.html
$compiler_8h_source.html
$timebase_8h.html
$queue_8h_source.html
$synch_8h_source.html
mailto:rpm@xenomai.org

6.32 ksrc/nucleus/sched-idle.c File Reference 159

6.32 ksrc/nucleus/sched-idle.c File Reference

Idle scheduling class implementation (i.e. Linux placeholder).

Include dependency graph for sched-idle.c:

6.32.1 Detailed Description

Idle scheduling class implementation (i.e. Linux placeholder).

Author

Philippe Gerum Copyright (C) 2008 Philippe Gerum rpm@xenomai . org.

Xenomai is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 2 of the License, or (at your
option) any later version.

Xenomai is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with Xenomaij if not, write to
the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

6.33 ksrc/nucleus/sched-rt.c File Reference

Common real-time scheduling class implementation (FIFO + RR)

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen


$sched_8h.html
$thread_8h_source.html
$vfile_8h.html
$schedqueue_8h_source.html
$sched-tp_8h.html
$sched-sporadic_8h.html
$sched-idle_8h.html
$sched-rt_8h.html
$types_8h_source.html
$stat_8h_source.html
$timer_8h.html
$registry_8h.html
$schedparam_8h_source.html
$compiler_8h_source.html
$assert_8h_source.html
$timebase_8h.html
$queue_8h_source.html
$synch_8h_source.html
mailto:rpm@xenomai.org

160 File Documentation

Include dependency graph for sched-rt.c:

nucleus/pod.h

6.33.1 Detailed Description

Common real-time scheduling class implementation (FIFO + RR)

Author

Philippe Gerum Copyright (C) 2008 Philippe Gerum rpm@xenomai .org.

Xenomai is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 2 of the License, or (at your
option) any later version.

Xenomai is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with Xenomai; if not, write to
the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

6.34 ksrc/nucleus/sched-sporadic.c File Reference

POSIX SCHED_SPORADIC scheduling class.

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen


$pod_8h.html
$sched_8h.html
$thread_8h_source.html
$vfile_8h.html
$schedqueue_8h_source.html
$sched-tp_8h.html
$sched-sporadic_8h.html
$sched-idle_8h.html
$sched-rt_8h.html
$types_8h_source.html
$stat_8h_source.html
$timer_8h.html
$registry_8h.html
$schedparam_8h_source.html
$compiler_8h_source.html
$assert_8h_source.html
$timebase_8h.html
$queue_8h_source.html
$synch_8h_source.html
mailto:rpm@xenomai.org

6.35 ksrc/nucleus/sched-tp.c File Reference 161

Include dependency graph for sched-sporadic.c:

6.34.1 Detailed Description

POSIX SCHED_SPORADIC scheduling class.

Author

Philippe Gerum Copyright (C) 2009 Philippe Gerum rpm@xenomai .org.

Xenomai is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 2 of the License, or (at your
option) any later version.

Xenomai is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with Xenomaij; if not, write to
the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

6.35 ksrc/nucleus/sched-tp.c File Reference

Temporal partitioning (typical of IMA systems).

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen


$pod_8h.html
$sched_8h.html
$thread_8h_source.html
$vfile_8h.html
$schedqueue_8h_source.html
$sched-tp_8h.html
$sched-sporadic_8h.html
$sched-idle_8h.html
$sched-rt_8h.html
$types_8h_source.html
$stat_8h_source.html
$timer_8h.html
$registry_8h.html
$schedparam_8h_source.html
$compiler_8h_source.html
$assert_8h_source.html
$timebase_8h.html
$queue_8h_source.html
$synch_8h_source.html
mailto:rpm@xenomai.org

162 File Documentation

Include dependency graph for sched-tp.c:

ksrc/nucleus/sched-tp.c

nucleus/schedqueue.n

nucleus/queue.n

nucleus/viile.h

linux/seq_file.h linuxfproc_fs.h

nucleus/types.h

linux/errno.h h

nucleus/assert.n

6.35.1 Detailed Description

Temporal partitioning (typical of IMA systems).

Author
Philippe Gerum Copyright (C) 2008 Philippe Gerum rpm@xenomai .org.

Xenomai is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 2 of the License, or (at your
option) any later version.

Xenomai is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with Xenomai; if not, write to
the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen


$pod_8h.html
$sched_8h.html
$thread_8h_source.html
$vfile_8h.html
$schedqueue_8h_source.html
$sched-tp_8h.html
$sched-sporadic_8h.html
$sched-idle_8h.html
$sched-rt_8h.html
$types_8h_source.html
$stat_8h_source.html
$timer_8h.html
$registry_8h.html
$schedparam_8h_source.html
$compiler_8h_source.html
$assert_8h_source.html
$timebase_8h.html
$queue_8h_source.html
$synch_8h_source.html
mailto:rpm@xenomai.org

6.36 ksrc/nucleus/sched.c File Reference 163

6.36 ksrc/nucleus/sched.c File Reference

Include dependency graph for sched.c:

ksrc/nucleus/sched.c

asm/xenomai/bits/sched.h

nucleus/sched.h nucleusiheap.h

nucleus/schedqueue.h

6.36.1 Detailed Description

Author

Philippe Gerum

Copyright (C) 2008 Philippe Gerum rpm@xenomai .org.

Xenomai is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 2 of the License, or (at your
option) any later version.

Xenomai is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with Xenomai; if not, write to
the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

6.37 ksrc/nucleus/select.c File Reference

file descriptors events multiplexing.

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen


$pod_8h.html
$thread_8h_source.html
$timer_8h.html
$intr_8h_source.html
$heap_8h_source.html
$sched_8h.html
$vfile_8h.html
$schedqueue_8h_source.html
$sched-tp_8h.html
$sched-sporadic_8h.html
$sched-idle_8h.html
$sched-rt_8h.html
$types_8h_source.html
$stat_8h_source.html
$registry_8h.html
$schedparam_8h_source.html
$compiler_8h_source.html
$assert_8h_source.html
$timebase_8h.html
$queue_8h_source.html
$synch_8h_source.html
mailto:rpm@xenomai.org

164 File Documentation

Include dependency graph for select.c:

nucleusipod.h

linuxitypes h linuxibitops.h

nucleus/heap.h

nucleusithread.n

Functions

e void xnselect_init (struct xnselect =select_block)

Initialize a struct xnselect structure.

e int xnselect_bind (struct xnselect =select_block, struct xnselect_binding =binding, struct xnselector
+selector, unsigned type, unsigned index, unsigned state)

Bind a file descriptor (represented by its xnselect structure) to a selector block.
e void xnselect_destroy (struct xnselect =select_block)

Destroy the xnselect structure associated with a file descriptor.
e int xnselector_init (struct xnselector =selector)

Initialize a selector structure.

e int xnselect (struct xnselector =selector, fd_set »out fds]XNSELECT_MAX_TYPES], fd_set =in_-
fds[XNSELECT_MAX_TYPES], int nfds, xnticks_t timeout, xntmode_t timeout_mode)

Check the state of a number of file descriptors, wait for a state change if no descriptor is ready.
e void xnselector_destroy (struct xnselector =selector)

Destroy a selector block.

6.37.1 Detailed Description
file descriptors events multiplexing.

Author
Gilles Chanteperdrix

Copyright (C) 2008 Efixo gilles.chanteperdrix@xenomai.org

Xenomai is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 2 of the License, or (at your
option) any later version.

Xenomai is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with Xenomai; if not, write to
the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen


$heap_8h_source.html
$pod_8h.html
$synch_8h_source.html
$select_8h.html
$queue_8h_source.html
$types_8h_source.html
$assert_8h_source.html
$compiler_8h_source.html
$sched_8h.html
$thread_8h_source.html
$vfile_8h.html
$schedqueue_8h_source.html
$sched-tp_8h.html
$sched-sporadic_8h.html
$sched-idle_8h.html
$sched-rt_8h.html
$stat_8h_source.html
$timer_8h.html
$registry_8h.html
$schedparam_8h_source.html
$timebase_8h.html
mailto:gilles.chanteperdrix@xenomai.org

6.38 ksrc/nucleus/shadow.c File Reference 165

6.38 ksrc/nucleus/shadow.c File Reference

Real-time shadow services.

Include dependency graph for shadow.c:

Functions

¢ int xnshadow_harden (void)

Migrate a Linux task to the Xenomai domain.
¢ void xnshadow_relax (int notify, int reason)

Switch a shadow thread back to the Linux domain.
e int xnshadow_map (xnthread_t «thread, xncompletion_t __user =u_completion, unsigned long __-
user =u_mode_offset)

Create a shadow thread context.
e xnshadow_ppd_t * xnshadow_ppd_get (unsigned muxid)
Return the per-process data attached to the calling process.

6.38.1 Detailed Description

Real-time shadow services.

Author

Philippe Gerum

Copyright (C) 2001-2008 Philippe Gerum rpm@xenomai.org. Copyright (C) 2004 The RTAI project
http://www.rtai.org Copyright (C) 2004 The HYADES project http://www.hyades-itea.org Copy-
right (C) 2005 The Xenomai project http://www.xenomai.org Copyright (C) 2006 Gilles Chanteperdrix
gilles.chanteperdrix@xenomai.org

Xenomai is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 2 of the License, or (at your
option) any later version.

Xenomai is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with Xenomaij if not, write to
the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

6.39 ksrc/nucleus/synch.c File Reference

Thread synchronization services.

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen


$pod_8h.html
$stat_8h_source.html
$synch_8h_source.html
$heap_8h_source.html
$module_8h_source.html
$shadow_8h_source.html
$jhash_8h_source.html
$ppd_8h_source.html
$trace_8h_source.html
$sys__ppd_8h_source.html
$vdso_8h.html
$sched_8h.html
$thread_8h_source.html
$vfile_8h.html
$schedqueue_8h_source.html
$sched-tp_8h.html
$sched-sporadic_8h.html
$sched-idle_8h.html
$sched-rt_8h.html
$types_8h_source.html
$timer_8h.html
$registry_8h.html
$schedparam_8h_source.html
$compiler_8h_source.html
$assert_8h_source.html
$timebase_8h.html
$queue_8h_source.html
$hostrt_8h.html
$seqlock_8h_source.html
mailto:rpm@xenomai.org
http://www.rtai.org
http://www.hyades-itea.org
http://www.xenomai.org
mailto:gilles.chanteperdrix@xenomai.org

166 File Documentation

Include dependency graph for synch.c:

ksrc/nucleus/synch.c

stdarg.h

nucleus/pod.h
nucleus/sched.h

nucleus/sched-tp.h

nucleus/schedparam.h nucleus/module.h

‘
nucleus/vfile.h
nucleus/types.h linux/proc_fs.h linux/seq_file.h

Functions

¢ void xnsynch_init (struct xnsynch =synch, xnflags_t flags, xnarch_atomic_t »fastlock)

Initialize a synchronization object.
e xnflags_t xnsynch_sleep_on (struct xnsynch =synch, xnticks_t timeout, xntmode_t timeout_-
mode)
Sleep on an ownerless synchronization object.
e struct xnthread * xnsynch_wakeup_one_sleeper (struct xnsynch =synch)
Give the resource ownership to the next waiting thread.
e struct xnpholder * xnsynch_wakeup_this_sleeper (struct xnsynch =synch, struct xnpholder
+holder)
Give the resource ownership to a given waiting thread.
e xnflags_t xnsynch_acquire (struct xnsynch =synch, xnticks_t timeout, xntmode_t timeout_mode)
Acquire the ownership of a synchronization object.
e static void xnsynch_clear_boost (struct xnsynch =synch, struct xnthread =owner)

Clear the priority boost.

¢ void xnsynch_requeue_sleeper (struct xnthread =thread)
Change a sleeper’s priority.

e struct xnthread = xnsynch_release (struct xnsynch =synch)

Give the resource ownership to the next waiting thread.
e struct xnthread * xnsynch_peek_pendq (struct xnsynch =synch)

Access the thread leading a synch object wait queue.
e int xnsynch_flush (struct xnsynch =synch, xnflags_t reason)

Unblock all waiters pending on a resource.
¢ void xnsynch_forget_sleeper (struct xnthread =thread)

Abort a wait for a resource.
¢ void xnsynch_release_all_ownerships (struct xnthread sthread)

Release all ownerships.

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen


$pod_8h.html
$thread_8h_source.html
$synch_8h_source.html
$module_8h_source.html
$sched_8h.html
$vfile_8h.html
$schedqueue_8h_source.html
$sched-tp_8h.html
$sched-sporadic_8h.html
$sched-idle_8h.html
$sched-rt_8h.html
$types_8h_source.html
$stat_8h_source.html
$timer_8h.html
$registry_8h.html
$schedparam_8h_source.html
$compiler_8h_source.html
$assert_8h_source.html
$timebase_8h.html
$queue_8h_source.html

6.40 ksrc/nucleus/timebase.c File Reference 167

6.39.1 Detailed Description
Thread synchronization services.

Author

Philippe Gerum

Copyright (C) 2001-2008 Philippe Gerum rpm@xenomai . org.

Xenomai is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 2 of the License, or (at your
option) any later version.

Xenomai is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with Xenomai; if not, write to
the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

6.40 ksrc/nucleus/timebase.c File Reference

Include dependency graph for timebase.c:

ksre/nucleus/timebase.c
nucleus/pod.h
nucleus/sched.h

[ nucleusimodule.h ]

dic. ]
L

s

nucleuslsynchh ] n l l " l

nucleus/vme - " nucleus/queue.h

linuxfproc_fs.h linux/seq_file.h nuc\eus/lypes n

nucleus/compiler.h linux/ermo.h h

Functions

e int xntbase_alloc (const char xname, u_long period, u_long flags, xntbase_t +basep)

Allocate a time base.
void xntbase_free (xntbase_t <base)

Free a time base.
int xntbase_update (xntbase_t xbase, u_long period)
Change the period of a time base.
int xntbase_switch (const char *name, u_long period, xntbase_t =xbasep)

Replace a time base.
void xntbase_start (xntbase_t base)

Start a time base.

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen


mailto:rpm@xenomai.org
$pod_8h.html
$timer_8h.html
$module_8h_source.html
$sched_8h.html
$thread_8h_source.html
$vfile_8h.html
$schedqueue_8h_source.html
$sched-tp_8h.html
$sched-sporadic_8h.html
$sched-idle_8h.html
$sched-rt_8h.html
$types_8h_source.html
$stat_8h_source.html
$registry_8h.html
$schedparam_8h_source.html
$compiler_8h_source.html
$assert_8h_source.html
$timebase_8h.html
$queue_8h_source.html
$synch_8h_source.html

168 File Documentation

void xntbase_stop (xntbase_t +base)

Stop a time base.
void xntbase_tick (xntbase_t base)

Announce a clock tick to a time base.
xnticks_t xntbase_convert (xntbase_t *srcbase, xnticks_t ticks, xntbase_t *dstbase)

Convert a clock value into another time base.
void xntbase_adjust_time (xntbase_t =base, xnsticks_t delta)

Adjust the clock time for the system.

6.40.1 Detailed Description

Note
Copyright (C) 2006,2007 Philippe Gerum rpm@xenomai .org.

Xenomai is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 2 of the License, or (at your
option) any later version.

Xenomai is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with Xenomaij if not, write to
the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

6.41 ksrc/nucleus/timer.c File Reference

Include dependency graph for timer.c:

h
\
[ poradic.n ] [ die.h ] [ h ] nucleus/sched-tp.n
l h l l h l h h
nucleus/stat.h l nucleus/synch.h ] l nucleusftimebase.h ]
h h
finux/proc_fs.h linux/seq_file.h

h linux/ermo.h nucleus/asserth

Functions

e void xntimer_tick_aperiodic (void)
Process a timer tick for the aperiodic master time base.
e void xntimer_tick_periodic (xntimer_t *mtimer)
Process a timer tick for a slave periodic time base.

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen


mailto:rpm@xenomai.org
$pod_8h.html
$thread_8h_source.html
$timer_8h.html
$sched_8h.html
$vfile_8h.html
$schedqueue_8h_source.html
$sched-tp_8h.html
$sched-sporadic_8h.html
$sched-idle_8h.html
$sched-rt_8h.html
$types_8h_source.html
$stat_8h_source.html
$registry_8h.html
$schedparam_8h_source.html
$compiler_8h_source.html
$assert_8h_source.html
$timebase_8h.html
$queue_8h_source.html
$synch_8h_source.html

6.42 ksrc/nucleus/vfile.c File Reference 169

void xntimer_init (xntimer_t «timer, xntbase_t =base, void(xhandler)(xntimer_t xtimer))

Initialize a timer object.
void xntimer_destroy (xntimer_t =timer)

Release a timer object.
unsigned long xntimer_get_overruns (xntimer_t «timer, xnticks_t now)

Get the count of overruns for the last tick.
void xntimer_freeze (void)

Freeze all timers (from every time bases).

6.41.1 Detailed Description

Note

Copyright (C) 2001,2002,2003,2007 Philippe Gerum rpm@xenomai.org. Copyright (C) 2004 Gilles
Chanteperdrix gilles.chanteperdrix@xenomai.org

Xenomai is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 2 of the License, or (at your
option) any later version.

Xenomai is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with Xenomai; if not, write to
the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

6.42 ksrc/nucleus/vfile.c File Reference

This file is part of the Xenomai project.

Include dependency graph for vfile.c:

ksrc/nucleus/vfile.c

stdarg.n linux/ctype.n nucleus/pod.h
nucleus/sched.h
1\ 2l n ;
l h l l h ] h h
h l h ] [ nucleus/synch.h ]
_—
N _—
nucleusiviile.h nucleus/queue.h
linux/seq_fle.n linuxiproc_fs.h nucleus/types.n
\\
N

linux/ermo.h h h h

Functions

¢ int xnvfile_init_snapshot (const char sname, struct xnvfile_snapshot =vfile, struct xnvfile_directory
=parent)

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen


mailto:rpm@xenomai.org
mailto:gilles.chanteperdrix@xenomai.org
$pod_8h.html
$assert_8h_source.html
$vfile_8h.html
$sched_8h.html
$thread_8h_source.html
$schedqueue_8h_source.html
$sched-tp_8h.html
$sched-sporadic_8h.html
$sched-idle_8h.html
$sched-rt_8h.html
$types_8h_source.html
$stat_8h_source.html
$timer_8h.html
$registry_8h.html
$schedparam_8h_source.html
$compiler_8h_source.html
$timebase_8h.html
$queue_8h_source.html
$synch_8h_source.html

170 File Documentation

Initialize a snapshot-driven Vfile.
e int xnvfile_init_regular (const char *name, struct xnvfile_regular =vfile, struct xnvfile_directory
=parent)

Initialize a regular vfile.
e int xnvfile_init_dir (const char =name, struct xnvfile directory =vdir, struct xnvfile_directory
=parent)

Initialize a virtual directory entry.
e int xnvfile_init_link (const char *from, const char =to, struct xnvfile_link =vlink, struct xnvfile_-
directory =parent)

Initialize a virtual link entry.
e void xnvfile_destroy (struct xnvfile =vfile)

Removes a virtual file entry.
e ssize_t xnvfile_get_blob (struct xnvfile_input +input, void =data, size_t size)

Read in a data bulk written to the vfile.
e ssize_t xnvfile_get_string (struct xnvfile_input =input, char =s, size_t maxlen)

Read in a C-string written to the Vfile.
e ssize_t xnvfile_get_integer (struct xnvfile_input =input, long =valp)
Evaluate the string written to the vfile as a long integer.

Variables

e struct xnvfile_directory nkvfroot
Xenomai vfile root directory.

6.42.1 Detailed Description
This file is part of the Xenomai project.

Note

Copyright (C) 2010 Philippe Gerum rpm@xenomai.org

This program is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 2 of the License, or (at your
option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not, write
to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen


mailto:rpm@xenomai.org

Index

affinity
xnthread_info, 115

begin
xnvfile_regular_ops, 118
xnvfile_snapshot_ops, 124

bprio
xnthread_info, 115

Buffer descriptors., 13
xnbufd_copy_from_kmem, 15
xnbufd_copy_to_kmem, 16
xnbufd_invalidate, 16
xnbufd_map_kread, 17
xnbufd_map_kwrite, 17
xnbufd_map_uread, 18
xnbufd_map_uwrite, 18
xnbufd_reset, 19
xnbufd_unmap_kread, 19
xnbufd_unmap_kwrite, 19
xnbufd_unmap_uread, 20
xnbufd_unmap_uwrite, 20

cprio

xnthread_info, 115
cpu

xnthread_info, 115
ctxswitches

xnthread_info, 115
curr

xnsched, 113

databuf
xnvfile_snapshot_iterator, 122

Dynamic memory allocation services., 22

xnheap_alloc, 23
xnheap_destroy, 23
xnheap_extend, 24
xnheap_free, 24
xnheap_init, 25
xnheap_schedule_free, 26
xnheap_set_label, 26
xnheap_test_and_free, 27

end

xnvfile_regular_ops, 118

xnvfile_snapshot_ops, 124
endfn

xnvfile_snapshot_iterator, 122
exectime

xnthread_info, 115

File descriptors events multiplexing services., 66

xnselect, 67
xnselect_bind, 67
xnselect_destroy, 68
xnselect_init, 68
xnselector_destroy, 68
xnselector_init, 68

get
xnvfile_lock_ops, 116

HAL., 101
rthal_apc_alloc, 102
rthal_apc_free, 102
rthal_irq_disable, 103
rthal_irq_enable, 103
rthal_irq_host_release, 104
rthal_irq_host_request, 104
rthal_irq_release, 105
rthal_irg_request, 105
rthal_timer_release, 106
rthal_timer_request, 106
rthal_trap_catch, 107

htimer
xnsched, 113

include/nucleus/bufd.h, 127
include/nucleus/hostrt.h, 128
include/nucleus/map.h, 130
include/nucleus/pod.h, 131
include/nucleus/registry.h, 133
include/nucleus/sched-idle.h, 134
include/nucleus/sched-rt.h, 135
include/nucleus/sched-sporadic.h, 135
include/nucleus/sched-tp.h, 136
include/nucleus/sched.h, 136
include/nucleus/select.h, 138
include/nucleus/timebase.h, 139
include/nucleus/timer.h, 140
include/nucleus/vdso.h, 141
include/nucleus/vfile.h, 142
inesting
xnsched, 113
Interrupt management., 29
xnintr_affinity, 29
xnintr_attach, 30
xnintr_destroy, 30
xnintr_detach, 31
xnintr_disable, 31
xnintr_enable, 32



172

INDEX

xnintr_init, 32

ksrc/arch/arm/hal.c, 144
ksrc/arch/blackfin/hal.c, 145
ksrc/arch/generic/hal.c, 146
ksrc/arch/nios2/hal.c, 146
ksrc/arch/powerpc/hal.c, 147
ksrc/arch/sh/hal.c, 148
ksrc/arch/x86/hal-common.c, 149
ksrc/arch/x86/hal_32.c, 150
ksrc/arch/x86/hal_64.c, 150
ksrc/arch/x86/smi.c, 151
ksrc/nucleus/bufd.c, 152
ksrc/nucleus/heap.c, 153
ksrc/nucleus/intr.c, 154
ksrc/nucleus/map.c, 155
ksrc/nucleus/pod.c, 156
ksrc/nucleus/registry.c, 157
ksrc/nucleus/sched-idle.c, 159
ksrc/nucleus/sched-rt.c, 159
ksrc/nucleus/sched-sporadic.c, 160
ksrc/nucleus/sched-tp.c, 161
ksrc/nucleus/sched.c, 163
ksrc/nucleus/select.c, 163
ksrc/nucleus/shadow.c, 165
ksrc/nucleus/synch.c, 165
ksrc/nucleus/timebase.c, 167
ksrc/nucleus/timer.c, 168
ksrc/nucleus/vfile.c, 169

Iflags
xnsched, 113
Lightweight key-to-object mapping service, 35
Xnmap_create, 35
xnmap_delete, 36
Xxnmap_enter, 36
xnmap_fetch, 37
xnmap_fetch_nocheck, 37
Xxnmap_remove, 38

modeswitches
xnthread_info, 115

name
xnthread_info, 115
next
xnvfile_regular_ops, 119
xnvfile_snapshot_ops, 124
nkvfroot
Virtual file services, 100
nrdata
xnvfile_snapshot_iterator, 123

pagefaults

xnthread_info, 115
pos

xnvfile_regular_iterator, 117
private

xnvfile_regular_iterator, 117

xnvfile_snapshot_iterator, 123
put
xnvfile_lock_ops, 116

Real-time pod services., 41
xnpod_abort_thread, 42
xnpod_add_hook, 43
xnpod_delete_thread, 43
xnpod_disable_timesource, 44
xnpod_dispatch_signals, 44
xnpod_enable_timesource, 44
xnpod_init, 45
xnpod_init_thread, 46
xnpod_migrate_thread, 47
xnpod_remove_hook, 48
xnpod_restart_thread, 48
xnpod_resume_thread, 48
xnpod_schedule, 49
xnpod_set_thread _mode, 50
xnpod_set_thread_periodic, 51
xnpod_set_thread_schedparam, 52
xnpod_set_thread_tslice, 53
xnpod_shutdown, 54
xnpod_start_thread, 54
xnpod_stop_thread, 55
xnpod_suspend_thread, 56
xnpod_trap_fault, 57
xnpod_unblock_thread, 57
xnpod_wait_thread_period, 58
xnpod_welcome_thread, 59

Real-time shadow services., 69
xnshadow_harden, 69
xnshadow_map, 69
xnshadow_ppd_get, 70
xnshadow_relax, 71

refent
xnpod, 112

Registry services., 60
xnregistry_bind, 60
xnregistry_enter, 61
xnregistry_fetch, 62
xnregistry_get, 63
xnregistry_put, 63
xnregistry_remove, 64
xnregistry_remove_safe, 64

relpoint

xnthread_info, 115
rev

xnvfile_rev_tag, 121
rewind

xnvfile_regular_ops, 119
xnvfile_snapshot_ops, 125
rootcb
xnsched, 113
rt
xnsched, 114
rthal_apc_alloc
HAL., 102
rthal_apc_free

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen



INDEX 173

HAL., 102 xnsynch_sleep_on, 77
rthal_irg_disable xnsynch_wakeup_one_sleeper, 78

HAL., 103 xnsynch_wakeup_this_sleeper, 79
rthal_irg_enable threadq

HAL., 103 xnpod, 112
rthal_irg_host_release Time base services., 81

HAL., 104 xntbase_adjust_time, 82
rthal_irg_host_request xntbase_alloc, 82

HAL., 104 xntbase_convert, 83
rthal_irg_release xntbase free, 84

HAL., 105 xntbase_get_time, 84
rthal_irg_request xntbase_start, 85

HAL., 105 xntbase_stop, 85
rthal_timer_release xntbase_switch, 86

HAL., 106 xntbase _tick, 86
rthal_timer_request xntbase_update, 87

HAL., 106 Timer services., 88
rthal_trap_catch xntimer_destroy, 89

HAL., 107 xntimer_freeze, 89

xntimer_get_date, 89

Sched, 109 xntimer_get_interval, 90

xnsched_rotate, 109 xntimer_get_overruns, 90
sched xntimer_get_timeout, 91

xnpod, 112 xntimer_init, 91

seq
xnvfile_regular_iterator, 117
xnvfile_snapshot_iterator, 123
show
xnvfile_regular_ops, 119

xntimer_start, 92

xntimer_stop, 93

xntimer_tick_aperiodic, 93

xntimer_tick_periodic, 94
timerlck

xnvfile_snapshot_ops, 125 xnpod, 112
state tsliced
xnthread_info, 115 xnpod, 112
status tslicer
xnpod, 112 xnpod, 112
xnsched, 114 tstartq
store xnpod, 112
xnvfile_regular_ops, 120 tswitchq
xnvfile_snapshot_ops, 126 xnpod, 112
tdeleteq vfile
xnpod, 112 xnvfile_regular_iterator, 117

Thread information flags., 12
Thread state flags., 9

xnvfile_snapshot_iterator, 123
Virtual file services, 95

XNHELD, 10 nkvfroot, 100
XNLOCK, 10 xnvfile_destroy, 96
XNMIGRATE, 10 xnvfile_get_blob, 97
XNPEND, 10 xnvfile_get_integer, 97
XNREADY, 11 xnvfile_get_string, 97
XNSUSP, 11 xnvfile_init_dir, 98

Thread synchronization services., 72

xnsynch_acquire, 73
xnsynch_clear_boost, 73
xnsynch_flush, 74

xnvfile_init_link, 98
xnvfile_init_regular, 99
xnvfile_init_snapshot, 99

xnsynch_forget_sleeper, 74 XNHELD
xnsynch_init, 75 Thread state flags., 10
xnsynch_peek_pendq, 76 XNLOCK

xnsynch_release, 76

Thread state flags., 10

xnsynch_release_all_ownerships, 77 XNMIGRATE
xnsynch_requeue_sleeper, 77 Thread state flags., 10

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen



174

INDEX

XNPEND

Thread state flags., 10
XNREADY

Thread state flags., 11
XNSUSP

Thread state flags., 11
Xenomai nucleus., 39
xnbufd_copy_from_kmem

Buffer descriptors., 15
xnbufd_copy_to_kmem

Buffer descriptors., 16
xnbufd_invalidate

Buffer descriptors., 16
xnbufd_map_kread

Buffer descriptors., 17
xnbufd_map_kwrite

Buffer descriptors., 17
xnbufd_map_uread

Buffer descriptors., 18
xnbufd_map_uwrite

Buffer descriptors., 18
xnbufd_reset

Buffer descriptors., 19
xnbufd_unmap_kread

Buffer descriptors., 19
xnbufd_unmap_kwrite

Buffer descriptors., 19
xnbufd_unmap_uread

Buffer descriptors., 20
xnbufd_unmap_uwrite

Buffer descriptors., 20
xnheap_alloc

Dynamic memory allocation services., 23

xnheap_destroy

Dynamic memory allocation services., 23

xnheap_extend

Dynamic memory allocation services., 24

xnheap_free

Dynamic memory allocation services., 24

xnheap_init

Dynamic memory allocation services., 25

xnheap_schedule_free

Dynamic memory allocation services., 26

xnheap_set_label

Dynamic memory allocation services., 26

xnheap_test_and_free

Dynamic memory allocation services., 27

xnintr_affinity

Interrupt management., 29
xnintr_attach

Interrupt management., 30
xnintr_destroy

Interrupt management., 30
xnintr_detach

Interrupt management., 31
xnintr_disable

Interrupt management., 31
xnintr_enable

Interrupt management., 32
xnintr_init

Interrupt management., 32
Xnmap_create

Lightweight key-to-object mapping service, 35

xnmap_delete

Lightweight key-to-object mapping service, 36

xnmap_enter

Lightweight key-to-object mapping service, 36

xnmap_fetch

Lightweight key-to-object mapping service, 37

xnmap_fetch_nocheck

Lightweight key-to-object mapping service, 37

XxXnmap_remove

Lightweight key-to-object mapping service, 38

xnpod, 111

refcnt, 112

sched, 112

status, 112

tdeleteq, 112

threadq, 112

timerlck, 112

tsliced, 112

tslicer, 112

tstartq, 112

tswitchq, 112
xnpod_abort_thread

Real-time pod services., 42
xnpod_add_hook

Real-time pod services., 43
xnpod_delete_thread

Real-time pod services., 43
xnpod_disable_timesource

Real-time pod services., 44
xnpod_dispatch_signals

Real-time pod services., 44
xnpod_enable_timesource

Real-time pod services., 44
xnpod_init

Real-time pod services., 45
xnpod_init_thread

Real-time pod services., 46
xnpod_migrate_thread

Real-time pod services., 47
xnpod_remove_hook

Real-time pod services., 48
xnpod_restart_thread

Real-time pod services., 48
xnpod_resume_thread

Real-time pod services., 48
xnpod_schedule

Real-time pod services., 49
xnpod_set_thread_mode

Real-time pod services., 50
xnpod_set_thread periodic

Real-time pod services., 51
xnpod_set_thread_schedparam

Real-time pod services., 52

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen



INDEX

175

xnpod_set_thread_tslice

Real-time pod services., 53
xnpod_shutdown

Real-time pod services., 54
xnpod_start_thread

Real-time pod services., 54
xnpod_stop_thread

Real-time pod services., 55
xnpod_suspend_thread

Real-time pod services., 56
xnpod_trap_fault

Real-time pod services., 57
xnpod_unblock_thread

Real-time pod services., 57
xnpod_wait_thread_period

Real-time pod services., 58
xnpod_welcome_thread

Real-time pod services., 59
xnregistry_bind

Registry services., 60
xnregistry_enter

Registry services., 61
xnregistry_fetch

Registry services., 62
xnregistry_get

Registry services., 63
xnregistry_put

Registry services., 63
xnregistry_remove

Registry services., 64
xnregistry_remove_safe

Registry services., 64
xnsched, 113

curr, 113

htimer, 113

inesting, 113

Iflags, 113

rootcb, 113

rt, 114

status, 114
xnsched_rotate

Sched, 109
xnselect

File descriptors events multiplexing services.,

67
xnselect_bind

File descriptors events multiplexing services.,

67
xnselect_destroy

File descriptors events multiplexing services.,

68
xnselect_init

File descriptors events multiplexing services.,

68
xnselector_destroy

File descriptors events multiplexing services.,

68
xnselector_init

File descriptors events multiplexing services.,

68

xnshadow_harden

Real-time shadow services., 69
xnshadow_map

Real-time shadow services., 69
xnshadow_ppd_get

Real-time shadow services., 70
xnshadow_relax

Real-time shadow services., 71
xnsynch_acquire

Thread synchronization services., 73
xnsynch_clear_boost

Thread synchronization services., 73
xnsynch_flush

Thread synchronization services., 74
xnsynch_forget_sleeper

Thread synchronization services., 74
xnsynch_init

Thread synchronization services., 75
xnsynch_peek_pendq

Thread synchronization services., 76
xnsynch_release

Thread synchronization services., 76
xnsynch_release_all_ownerships

Thread synchronization services., 77
xnsynch_requeue_sleeper

Thread synchronization services., 77
xnsynch_sleep_on

Thread synchronization services., 77
xnsynch_wakeup_one_sleeper

Thread synchronization services., 78
xnsynch_wakeup_this_sleeper

Thread synchronization services., 79
xntbase_adjust_time

Time base services., 82
xntbase_alloc

Time base services., 82
xntbase_convert

Time base services., 83
xntbase_free

Time base services., 84
xntbase_get_time

Time base services., 84
xntbase_start

Time base services., 85
xntbase_stop

Time base services., 85
xntbase_switch

Time base services., 86
xntbase_tick

Time base services., 86
xntbase_update

Time base services., 87
xnthread_info, 114

affinity, 115

bprio, 115

cprio, 115

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen



176 INDEX
cpu, 115 rewind, 119
ctxswitches, 115 show, 119
exectime, 115 store, 120
modeswitches, 115 xnvfile_rev_tag, 121
name, 115 rev, 121
pagefaults, 115 xnvfile_snapshot, 121
relpoint, 115 xnvfile_snapshot_iterator, 122
state, 115 databuf, 122

xntimer_destroy

Timer services., 89
xntimer_freeze

Timer services., 89
xntimer_get_date

Timer services., 89
xntimer_get_interval

Timer services., 90
xntimer_get_overruns

Timer services., 90
xntimer_get_timeout

Timer services., 91
xntimer_init

Timer services., 91
xntimer_start

Timer services., 92
xntimer_stop

Timer services., 93
xntimer_tick_aperiodic

Timer services., 93
xntimer_tick_periodic

Timer services., 94
xnvfile_destroy

Virtual file services, 96
xnvfile_get_blob

Virtual file services, 97
xnvfile_get integer

Virtual file services, 97
xnvfile_get_string

Virtual file services, 97
xnvfile_init_dir

Virtual file services, 98
xnvfile_init_link

Virtual file services, 98
xnvfile_init_regular

Virtual file services, 99
xnvfile_init_snapshot

Virtual file services, 99
xnvfile_lock_ops, 116

get, 116

put, 116
xnvfile_regular_iterator, 117

pos, 117

private, 117

seq, 117

vfile, 117
xnvfile_regular_ops, 118

begin, 118

end, 118

next, 119

endfn, 122
nrdata, 123
private, 123
seq, 123
vfile, 123
xnvfile_snapshot_ops, 123

begin, 124
end, 124
next, 124
rewind, 125
show, 125
store, 126

Generated on Sun Oct 13 2013 19:13:18 for Xenomai nanokernel APl by Doxygen



	Module Index
	Modules

	Data Structure Index
	Data Structures

	File Index
	File List

	Module Documentation
	Thread state flags.
	Detailed Description
	Macro Definition Documentation
	XNHELD
	XNLOCK
	XNMIGRATE
	XNPEND
	XNREADY
	XNSUSP


	Thread information flags.
	Detailed Description

	Buffer descriptors.
	Detailed Description
	Function Documentation
	xnbufd_copy_from_kmem
	xnbufd_copy_to_kmem
	xnbufd_invalidate
	xnbufd_map_kread
	xnbufd_map_kwrite
	xnbufd_map_uread
	xnbufd_map_uwrite
	xnbufd_reset
	xnbufd_unmap_kread
	xnbufd_unmap_kwrite
	xnbufd_unmap_uread
	xnbufd_unmap_uwrite


	Dynamic memory allocation services.
	Detailed Description
	Function Documentation
	xnheap_alloc
	xnheap_destroy
	xnheap_extend
	xnheap_free
	xnheap_init
	xnheap_schedule_free
	xnheap_set_label
	xnheap_test_and_free


	Interrupt management.
	Detailed Description
	Function Documentation
	xnintr_affinity
	xnintr_attach
	xnintr_destroy
	xnintr_detach
	xnintr_disable
	xnintr_enable
	xnintr_init


	Lightweight key-to-object mapping service
	Detailed Description
	Function Documentation
	xnmap_create
	xnmap_delete
	xnmap_enter
	xnmap_fetch
	xnmap_fetch_nocheck
	xnmap_remove


	Xenomai nucleus.
	Detailed Description

	Real-time pod services.
	Detailed Description
	Function Documentation
	xnpod_abort_thread
	xnpod_add_hook
	xnpod_delete_thread
	xnpod_disable_timesource
	xnpod_dispatch_signals
	xnpod_enable_timesource
	xnpod_init
	xnpod_init_thread
	xnpod_migrate_thread
	xnpod_remove_hook
	xnpod_restart_thread
	xnpod_resume_thread
	xnpod_schedule
	xnpod_set_thread_mode
	xnpod_set_thread_periodic
	xnpod_set_thread_schedparam
	xnpod_set_thread_tslice
	xnpod_shutdown
	xnpod_start_thread
	xnpod_stop_thread
	xnpod_suspend_thread
	xnpod_trap_fault
	xnpod_unblock_thread
	xnpod_wait_thread_period
	xnpod_welcome_thread


	Registry services.
	Detailed Description
	Function Documentation
	xnregistry_bind
	xnregistry_enter
	xnregistry_fetch
	xnregistry_get
	xnregistry_put
	xnregistry_remove
	xnregistry_remove_safe


	File descriptors events multiplexing services.
	Detailed Description
	Function Documentation
	xnselect
	xnselect_bind
	xnselect_destroy
	xnselect_init
	xnselector_destroy
	xnselector_init


	Real-time shadow services.
	Detailed Description
	Function Documentation
	xnshadow_harden
	xnshadow_map
	xnshadow_ppd_get
	xnshadow_relax


	Thread synchronization services.
	Detailed Description
	Function Documentation
	xnsynch_acquire
	xnsynch_clear_boost
	xnsynch_flush
	xnsynch_forget_sleeper
	xnsynch_init
	xnsynch_peek_pendq
	xnsynch_release
	xnsynch_release_all_ownerships
	xnsynch_requeue_sleeper
	xnsynch_sleep_on
	xnsynch_wakeup_one_sleeper
	xnsynch_wakeup_this_sleeper


	Time base services.
	Detailed Description
	Function Documentation
	xntbase_adjust_time
	xntbase_alloc
	xntbase_convert
	xntbase_free
	xntbase_get_time
	xntbase_start
	xntbase_stop
	xntbase_switch
	xntbase_tick
	xntbase_update


	Timer services.
	Detailed Description
	Function Documentation
	xntimer_destroy
	xntimer_freeze
	xntimer_get_date
	xntimer_get_interval
	xntimer_get_overruns
	xntimer_get_timeout
	xntimer_init
	xntimer_start
	xntimer_stop
	xntimer_tick_aperiodic
	xntimer_tick_periodic


	Virtual file services
	Detailed Description
	Function Documentation
	xnvfile_destroy
	xnvfile_get_blob
	xnvfile_get_integer
	xnvfile_get_string
	xnvfile_init_dir
	xnvfile_init_link
	xnvfile_init_regular
	xnvfile_init_snapshot

	Variable Documentation
	nkvfroot
	nkvfroot


	HAL.
	Detailed Description
	Function Documentation
	rthal_apc_alloc
	rthal_apc_free
	rthal_irq_disable
	rthal_irq_enable
	rthal_irq_host_release
	rthal_irq_host_request
	rthal_irq_release
	rthal_irq_request
	rthal_timer_release
	rthal_timer_request
	rthal_trap_catch


	Sched
	Detailed Description
	Function Documentation
	xnsched_rotate



	Data Structure Documentation
	xnpod Struct Reference
	Detailed Description
	Field Documentation
	refcnt
	sched
	status
	tdeleteq
	threadq
	timerlck
	tsliced
	tslicer
	tstartq
	tswitchq


	xnsched Struct Reference
	Detailed Description
	Field Documentation
	curr
	htimer
	inesting
	lflags
	rootcb
	rt
	status


	xnthread_info Struct Reference
	Detailed Description
	Field Documentation
	affinity
	bprio
	cprio
	cpu
	ctxswitches
	exectime
	modeswitches
	name
	pagefaults
	relpoint
	state


	xnvfile_lock_ops Struct Reference
	Detailed Description
	Field Documentation
	get
	put


	xnvfile_regular_iterator Struct Reference
	Detailed Description
	Field Documentation
	pos
	private
	seq
	vfile


	xnvfile_regular_ops Struct Reference
	Detailed Description
	Field Documentation
	begin
	end
	next
	rewind
	show
	store


	xnvfile_rev_tag Struct Reference
	Detailed Description
	Field Documentation
	rev


	xnvfile_snapshot Struct Reference
	Detailed Description

	xnvfile_snapshot_iterator Struct Reference
	Detailed Description
	Field Documentation
	databuf
	endfn
	nrdata
	private
	seq
	vfile


	xnvfile_snapshot_ops Struct Reference
	Detailed Description
	Field Documentation
	begin
	end
	next
	rewind
	show
	store



	File Documentation
	include/nucleus/bufd.h File Reference
	Detailed Description

	include/nucleus/hostrt.h File Reference
	Detailed Description

	include/nucleus/map.h File Reference
	Detailed Description

	include/nucleus/pod.h File Reference
	Detailed Description

	include/nucleus/registry.h File Reference
	Detailed Description

	include/nucleus/sched-idle.h File Reference
	Detailed Description

	include/nucleus/sched-rt.h File Reference
	Detailed Description

	include/nucleus/sched-sporadic.h File Reference
	Detailed Description

	include/nucleus/sched-tp.h File Reference
	Detailed Description

	include/nucleus/sched.h File Reference
	Detailed Description

	include/nucleus/select.h File Reference
	Detailed Description

	include/nucleus/timebase.h File Reference
	Detailed Description

	include/nucleus/timer.h File Reference
	Detailed Description

	include/nucleus/vdso.h File Reference
	Detailed Description

	include/nucleus/vfile.h File Reference
	Detailed Description

	ksrc/arch/arm/hal.c File Reference
	Detailed Description

	ksrc/arch/blackfin/hal.c File Reference
	Detailed Description

	ksrc/arch/generic/hal.c File Reference
	Detailed Description

	ksrc/arch/nios2/hal.c File Reference
	Detailed Description

	ksrc/arch/powerpc/hal.c File Reference
	Detailed Description

	ksrc/arch/sh/hal.c File Reference
	Detailed Description

	ksrc/arch/x86/hal-common.c File Reference
	Detailed Description

	ksrc/arch/x86/hal_32.c File Reference
	Detailed Description

	ksrc/arch/x86/hal_64.c File Reference
	Detailed Description

	ksrc/arch/x86/smi.c File Reference
	Detailed Description

	ksrc/nucleus/bufd.c File Reference
	Detailed Description

	ksrc/nucleus/heap.c File Reference
	Detailed Description

	ksrc/nucleus/intr.c File Reference
	Detailed Description

	ksrc/nucleus/map.c File Reference
	Detailed Description

	ksrc/nucleus/pod.c File Reference
	Detailed Description

	ksrc/nucleus/registry.c File Reference
	Detailed Description

	ksrc/nucleus/sched-idle.c File Reference
	Detailed Description

	ksrc/nucleus/sched-rt.c File Reference
	Detailed Description

	ksrc/nucleus/sched-sporadic.c File Reference
	Detailed Description

	ksrc/nucleus/sched-tp.c File Reference
	Detailed Description

	ksrc/nucleus/sched.c File Reference
	Detailed Description

	ksrc/nucleus/select.c File Reference
	Detailed Description

	ksrc/nucleus/shadow.c File Reference
	Detailed Description

	ksrc/nucleus/synch.c File Reference
	Detailed Description

	ksrc/nucleus/timebase.c File Reference
	Detailed Description

	ksrc/nucleus/timer.c File Reference
	Detailed Description

	ksrc/nucleus/vfile.c File Reference
	Detailed Description



