
Running applications with Xenomai 3.x i

Running applications with Xenomai 3.x



Running applications with Xenomai 3.x ii

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME



Running applications with Xenomai 3.x iii

Contents

1 Running a Xenomai 3 application 1

2 Valgrind support 2

3 Available real-time APIs 2



Running applications with Xenomai 3.x 1 / 2

1 Running a Xenomai 3 application

For Cobalt, you will need the real-time core built into the target Linux kernel as described in this document.

For Mercury, you need no Xenomai-specific kernel support so far, beyond what your host Linux kernel already provides. Your
kernel should at least provide high resolution timer support (CONFIG_HIGH_RES_TIMERS), and likely complete preemption
(PREEMPT_RT) if your application requires short and bounded latencies.

An application recognises a set of options that may be passed on the command line, namely:

--<api>-clock-
resolution=<ns>

The clock resolution available with the real-time API, given as a count of nano-seconds, i.e.
HZ=(1000000000 / ns).
<api> is the name of one of the existing Xenomai APIs your application can be linked against, e.g.
psos, vxworks or alchemy. When your application combines multiple APIs, you may pass several
clock-resolution switches to set them all.
The default value depends on the API being considered. For instance, the VxWorks ™ and pSOS ™
emulators default to 1 millisecond clock rates. The Alchemy API is tickless by default, i.e. --
alchemy-clock-resolution=1.

Caution
Specifying a resolution greater than 1 nanosecond requires the low resolution clock support to be available from the
Xenomai libraries (see the --enable-lores-clock configuration switch).

--mem-pool-size=<kb>
The initial size in Kilobytes of the main memory pool. This option only makes sense when the TLSF allocator is being
used (i.e. --enable-debug is not specified when compiling the Xenomai libraries). This is only a hint, since TLSF
will increase the main pool size dynamically as needed, if needed.

However, this option may be used to pre-allocate the specified amount of memory to the application process, thus avoiding
costly system calls to extend the data segment of such process while operating in time critical mode.

--no-mlock
Tells the Xenomai libraries not to lock the process memory while initializing. The application will have to handle this task
when and how it sees fit, in order to avoid the extra latency induced by virtual memory paging. Otherwise, mlockall(M
CL_CURRENT | MCL_FUTURE) is automatically invoked as part of the API initialization duties.

This flag only applies to the Mercury core. Memory must be locked when invoking dual kernel services, therefore this
switch is a nop over Cobalt.

--registry-root=<path>
Tells Xenomai to root the object registry at the given path, instead of /var/run/xenomai by default (see the --
enable-registry switch from the configuration options).

--shared-registry
Exports the registry of the process to other users. If access is possible, also depends on permissions of the registry path.
By default, the registry is only accessible for the user that started the Xenomai process.

--no-registry
This switch disables registry support at runtime. No real-time objects will be exported to /var/run/xenomai/[<us
er>/]<session>/<pid>, despite the registry code was compiled in.

--no-sanity , --sanity
Turns off/on the sanity checks performed at application startup by the Xenomai libraries. This option overrides the --
enable/disable-sanity options passed on the configuration line when building the Xenomai libraries.



Running applications with Xenomai 3.x 2 / 2

Tip
Passing --no-sanity allows running Xenomai libraries built for a single-processor system (i.e. --disable-smp) on a SMP
system, assuming your application properly pins all threads to a single CPU.

--session=<label>
Name of the session the new process will be part of (or create if not present). If --enable-pshared was given when
configuring the Xenomai libraries, this label allows multiple processes giving the same label at startup to operate on the
same set of objects.

For instance, a process can post a semaphore created by another process from the same session. This is done using a
common heap area, shared by all processes within the same session.

This label is also used to form the registry mount point for each process, e.g. /var/run/xenomai/[<user>/]<se
ssion>/<pid>. See --enable-registry from the build options.

By default, anon is used as the session label.

--reset
Forces removal of an older session. This only works if the process which initiated the former session has exited, otherwise
an error is raised.

--cpu-affinity=<cpu[,cpu]. . . >
Sets the CPU affinity of threads created by the Xenomai libraries within the new process.

--version
Writes the Xenomai version information to stdout. The program immediately exits with a success code afterwards.

--dump-config
Dumps the configuration settings to stdout. Those settings are defined as a result of running the configure script. The
program immediately exits with a success code afterwards.

2 Valgrind support

Running Xenomai applications over Valgrind is currently available to the Mercury core only.

When the Valgrind API is available to the application process, the configuration symbol CONFIG_XENO_VALGRIND_API is
defined at build time, and may be tested for existence by the application code. See the tool documentation at this address.

The Xenomai autoconf script will detect the Valgrind core header on the build system automatically, and define this symbol
accordingly (i.e. /usr/include/valgrind/valgrind.h).

Note
You may need to install the Valgrind development package on your build system to provide for the core header files. For
instance, such package is called valgrind-devel on Fedora.

3 Available real-time APIs

Alchemy This is a re-implementation from scratch of Xenomai’s 2.x native API, fully rebased on the new
RTOS abstraction interface.

pSOS pSOS ™ is a registered trademark of Wind River Systems, Inc.

VxWorks VxWorks ™ is a registered trademark of Wind River Systems, Inc.

http://valgrind.org/docs/manual/manual-core-adv.html#manual-core-adv.clientreq/
http://www.windriver.com
http://www.windriver.com

	Running a Xenomai 3 application
	Valgrind support
	Available real-time APIs

